라틴어 문장 검색

Unde cum pondus Globi aquei, quo tempore Globus cum velocitate uniformiter continuata describat longitudinem pedum 30,556, velocitatem illam omnem in Globo cadente generare posset;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 82:3)
Centro C intervallo CA describatur Globus exterior ABD, & intra hunc globum Rota, cujus diameter sit AO, describantur duae semicycloides AQ, AS, quae globum interiorem tangant in Q & S & globo exteriori occurrant in A. A puncto illo A, filo APT longitudinem AR aequante, pendeat corpus T, & ita intra semicycloides AQ, AS oscilletur, ut quoties pendulum digreditur a perpendiculo AR, filum parte sui superiore AP applicetur ad semicycloidem illam APS, versus quam peragitur motus, & circum eam ceu obstaculum flectatur, parteq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 24:3)
Igitur quantitas aquae, cujus descensum Globus dato tempore impedit, est ad quantitatem aquae quae, si Globus tolleretur, eodem tempore descenderet, ut basis Cylindri circa Globum descripti ad orificium canalis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 56:16)
& propterea partes quasi duae tertiae motus illius omnis quem Globi partes anticae movendo imprimunt in Medium, restituuntur in Globi partes posticas a Medio in orbem redeunte, inque spatium irruente quod Globus alias vacuum post se relinqueret.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 103:5)
Et propterea aquae currentis impetus in Globum quiescentem, quo tempore aqua currendo describit duas tertias partes diametri Globi, si uniformiter continuetur, generaret motum omnem partis Fluidi quae Globo aequatur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 58:8)
Et propterea resistentia Globi in Medio quocunque Fluidissimo uniformiter progredientis, quo tempore Globus duas tertias partes diametri suae describit, aequalis est vi, quae in corpus ejusdem magnitudinis cum Globo & ejusdem densitatis cum Medio uniformiter impressa, quo tempore Globus duas tertias partes diametri suae progrediendo describit, velocitatem Globi in corpore illo generare posset.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 60:3)
Rursus efficacia hujus vis ad movendum globum secundum incidentiae suae plagam FB vel AC, est ad ejusdem efficaciam ad movendum globum secundum plagam determinationis suae, id est secundum plagam rectae BC qua globum directe urget, ut BE ad BC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 28:10)
versarique potest, globus ut, si forte, pilai dimidia ex parti candenti lumine tinctus, versandoque globum variantis edere formas, donique eam partem, quae cumque est ignibus aucta, ad speciem vertit nobis oculosque patentis;
(루크레티우스, 사물의 본성에 관하여, Liber Quintus 27:6)
Igitur resistentiarum partes illae quae sunt (paribus Globis) ut quadrata velocitatum, sunt etiam (paribus velocitatibus) ut quadrata diametrorum Globorum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 89:26)
In ea capiatur LB semidiametro CB aequalis, & ducatur BD quae Sphaeram tangat in B. In AC & BD demittantur perpendiculares BE, DL, & vis qua particula Medii, secundum rectam FB oblique incidendo, Globum ferit in B, erit ad vim qua particula eadem Cylindrum ONGQ axe ACI circa Globum descriptum perpendiculariter feriret in b, ut LD ad LB vel BE ad BC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 28:9)
Unde si annulus globo adhaereat, & motum suum, quo ipsius Nodi seu puncta aequinoctialia regrediuntur, cum globo communicet:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 5:9)
Sunt autem partes sub initio descriptae ut accelerationes, hoc est ut totae sub initio describendae, & propterea partes quae manent describendae & accelerationes subsequentes his partibus proportionales sunt etiam ut totae;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 29:9)
Postea si vires constanter impressae, quibus globi in motibus suis perseverant, cessarent, & omnia legibus Mechanicis permitterentur, languesceret paulatim motus globorum (ob rationem in Corol. 3. & 4.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 23:6)
Intra Globum QVS centro C descriptum detur Cyclois QRS bisecta in R & punctis suis extremis Q & S superficiei Globi hinc inde occurrens.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 24:1)
Postea Globum plumbeum, diametro digitorum duorum & pondere unciarum Romanarum 26¼ suspendi filo eodem, sic ut inter centrum Globi & punctum suspensionis intervallum esset pedum 10½, & numerabam oscillationes quibus data motus pars amitteretur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 85:1)

SEARCH

MENU NAVIGATION