라틴어 문장 검색

ob eorum analoga incrementa necesse est ut in aequalibus quibuscunque temporibus sint ad invicem ut area illa BD × V^2 ÷ 4AB & arearum DET & AKNb differentia. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 35:14)
Proinde corpus quod specifice gravius est quam Fluidum sibi contiguum subsidebit, & quod specifice levius est ascendet, motumque & figurae mutationem consequetur, quantum excessus ille vel defectus gravitatis efficere possit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 22:2)
cumque velocitatum incrementa vel decrementa sint ut hae differentiae vel summae, velocitates semper erunt ut arcus toti:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 18:4)
Et areae {OR ÷ OQ} IEF - IGH incrementum GHhg - {Rr ÷ OQ} IEF, seu Rr × HG - {Rr ÷ OQ} IEF, erit ad areae PIGR decrementum RGgr seu Rr × RG, ut HG - {IEF ÷ OQ} ad RG;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 31:5)
Igitur si area {OR ÷ OQ} IEF - IGH dicatur Y, atque areae PIGR decrementum RGgr detur, erit incrementum areae Y ut PIGR - Y.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 31:8)
erit V - R vis tota qua corpus urgetur in D, adeoque ut incrementum velocitatis in data temporis particula factum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 32:3)
Ad df demittatur perpendiculum Fm, & velocitatis DF decrementum fg a resistentia DK genitum, erit ad velocitatis ejusdem incrementum fma vi CD genitum, ut vis generans DK ad vim generantem CD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:13)
similes inducentur mutationes in figuris quas particulae describunt.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 3:13)
Arcus enim describent minus curvos, & conatus recedendi à centro non minus diminuetur per decrementum hujus curvaturae, quàm augebitur per incrementum velocitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 31:13)
Nam si aether aut corpus aliud quodcunque vel gravitate omnino destitueretur vel pro quantitate materiae suae minus gravitaret, quoniam id non differt ab aliis corporibus nisi in forma materiae, posset idem per mutationem formae gradatim transmutari in corpus ejusdem conditionis cum iis quae pro quantitate materiae quam maximè gravitant, (per Hypoth. III.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 24:4)
Unde tale confit Theorema, quod incrementum ponderis, pergendo ab AEquatore ad Polos, sit quam proximè ut Sinus versus latitudinis duplicatae, vel quod perinde est ut quadratum Sinus recti Latitudinis.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 11~20 38:1)
Invenire incrementum areae quam Luna radio ad Terram ducto describit.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 27:1)
Inaequalitatem momenti (vel incrementi horarii) hic investigandam proponimus.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 29:2)
& compositè, area tota GCKF ut summa omnium virium EL tempore toto CP impressarum in Lunam, atque adeò etiam ut velocitas hac summâ genita, id est, ut acceleratio descriptionis areae CSP, seu incrementum momenti.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 29:16)
augeri debent momentorum incrementa in ratione temporis.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 30:5)

SEARCH

MENU NAVIGATION