라틴어 문장 검색

Multiplex superparticularis est, quotiens numerus ad numerum comparatus habet eum plus quam semel et eius unam partem, hoc est habet eum aut duplum aut triplum aut quadruplum aut quotienslibet et eius quamlibet aliquam partem vel mediam vel tertiam vel quartam vel, quaecunque alia partium exuberatione contigerit.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 1:4)
Dicetur enim, qui duplicem habuerit alium numerum et eius mediam partem, duplex sesqualter, qui vero tertiam, duplex sesquitertius, qui quartam, duplex sesquiquartus et deinceps.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 1:9)
Si vero ter eum totum contineat et eius mediam partem vel tertiam vel quartam, dicetur triplex sesqualter, triplex sesquitertius, triplex sesquiquartus et eodem modo in ceteris;
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 1:10)
In hoc quoque propter causam superius dictam non erunt duae medietates neque duae quartae neque duae sextae, sed duae tertiae vel duae quintae vel duae septimae ad priorum similem consequentiam.
(보이티우스, De Arithmetica, Liber primus, De multiplici superpartiente. 1:2)
Primus ergo duplex unum solum habebit sesqualterum, secundus duo, tertius tres, quartus quattuor et secundum hunc ordinem eadem fit in infinitum progressio, neque unquam fieri potest, ut vel superet proportionum numerum vel ab eo sit deminutior aequabilis ab unitate locatio.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 2:3)
Plana vero superficies in numeris invenitur, quotiens a tribus inchoatione facta addita descriptionis latitudine insequentium se naturalium numerorum multitudine anguli dilatantur, ut sit primus triangulus numerus, secundus quadratus, tertius qui sub quinque angulis continetur, quem pentagonum Graeci nominant, quartus exagonus, id est qui sex angulis includitur et ceteri eodem modo singillatim per naturalem numerum angulos augeant in plana scilicet descriptione figurarum.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:1)
quarti vero, id est xv, quinarius latus tenet, et quinti senarius idemque est usque in infinitum.
(보이티우스, De Arithmetica, Liber secundus, De lateribus triangulorum numerorum. 1:8)
At vero si his intermisso senario septenarium iungam tota in sedecim summa concrescit, id est quarti quadrati numerositas.
(보이티우스, De Arithmetica, Liber secundus, De quadratorum numerorum generatione rursusque de eorum lateribus 3:6)
quartus xxij quattuor numerorum in latere quantitate distenditur;
(보이티우스, De Arithmetica, Liber secundus, De pentagonis eorumque lateribus 2:6)
prima pyramis de triangulo, secunda pyramis de tetragono, tertia pyramis de pentagono, quarta pyramis de exagono, quinta pyramis de eptagono, idemque in ceteris constat numeris.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 1:2)
Et si inter tertium et quartum tetragonum tertium parte altera longiorem constituas, sesquitertia species nascitur.
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 21:4)
Et rursus ternarius, qui novenarii pars tertia est, duodenarii quarta est;
(보이티우스, De Arithmetica, Liber secundus, Alternatim positis quadratis et parte altera longioribus qui sit eorum consensus in differentiis et in proportionibus 8:6)
Et sequentes quattuor quartum, et qui sequuntur quinque quintum, et ad eundem modum quotus quisque cybus efficitur, tot coniunctione inpares apponuntur.
(보이티우스, De Arithmetica, Liber secundus, Cybos eiusdem participare substantiae, quod ab inparibus nascantur 3:4)
Post quas proportionum habitudines tres aliae sunt, quae sine nomine feruntur quidem, vocantur autem quarta, quinta, sexta, quae superius dictis oppositae sunt.
(보이티우스, De Arithmetica, Liber secundus, Quae apud antiquos proportionalitas fuerit; quas posteriores addiderint 1:3)
Quartum vero proprium huiusmodi dispositionis notatur, quod antiquiores quoque habuere notissimum, quod in hac proportionalitate vel medietate in minoribus terminis maiores proportiones, in maioribus minores comparationes necesse est inveniri.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 6:1)

SEARCH

MENU NAVIGATION