라틴어 문장 검색

Et erit DN aequalis a - o, VG aequalis bb ÷ {a - o}, VZ aequalis m ÷ n {a - o}, & GD seu NX - VZ - VG aequalis c - {m ÷ n}a + {m ÷ n}o - bb ÷ {a - o}.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 78:5)
RV aequalis DR × QB ÷ N, & Rr (id est RV - Vr seu {DR × QB - tGT} ÷ N) aequalis {DR × AB - RDGT} ÷ N. Exponatur jam tempus per aream RDGT, & (per Legum Corol. 2.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 28:2)
Sed area illa per notas quadraturarum methodos est reciproce ut CG^{n - 3}, & propterea vis solidi totius est reciproce ut CG^{n - 3} Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 47:17)
mm-m nn-n bT^m - mbXT^{m-1} + ----bX^2T^{m-2} + cT^n - ncXT^{n-1} + ----cX^2T^{n-2} 2 2 &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 20:1)
& signis + & - probe observatis quaerantur numeri m & n, ea lege ut sit G - C = mG - mg + nG - n[gamma], & T - S aequale mT - mt + nT - n[tau].
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 42 6:3)
ad bT^m + cT^n, ut -Fq. ad -mbT^{m - 1} - ncT^{n - 1} + {mm - m}÷2 XT^{m - 2} + {nn - n}÷2 XT^{n - 2} &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 21:4)
Hos no/n hostilis de/xtra, non Terra e/dita Mole/s Gigantum, no/n biformato i/mpetu Centau/rus ictus co/rpori inflixi/t meo, Non Gra/ia vis, non ba/rbara ulla inma/nitas, Non sae/va terris ge/ns relegata u/ltimis, Quas pe/ragrans undique o/mnem ecferitatem e/xpuli, Sed fe/minae vir fe/minea interimo/r manu.
(마르쿠스 툴리우스 키케로, 투스쿨라눔의 대화, 2권 20:9)
Haec autem vis (per Casum primum) est reciproce ut CK^{n - 3}, hoc est (ob aequales CG, CK) reciproce ut CG^{n - 3}. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 48:5)
erit R + mr - mR + n[rho] - nR verum Latus rectum, & 1 ÷ {L + ml - mL + n[lambda] - nL} verum Latus transversum Trajectoriae quàm Cometa describit.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 42 6:7)
Et sumendo rationes ultimas quae prodeunt ubi orbes ad formam circularem accedunt, fit Gq. ad bT^{m - 1} + cT^{n - 1}, ut Fq. ad mbT^{m - 1} + ncT^{n - 1}, & vicissim Gq. ad Fq. ut bT^{m - 1} + cT^{n - 1} ad mbT^{m - 1} + ncT^{n - 1}.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 21:5)
Quod si figura DNFB ejusmodi sit ut, si ab ejus puncto quovis N ad axem AB demittatur perpendiculum NM, & a puncto dato G ducatur recta GR quae parallela sit rectae figuram tangenti in N, & axem productum secet in R, fuerit MN ad GR ut GR cub.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 34:1)
Sit angulus iste N. Tum capiatur & angulus D ad angulum B, ut est sinus iste anguli ACQ ad Radium, & angulus E ad angulum N - ACQ + D, ut est longitudo L ad longitudinem eandem L cosinu anguli ACQ + ½D diminutam, ubi angulus iste recto minor est, auctam ubi major.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 26:10)
maA^{m - 1} aequale nbB^{n - 1}, & maA^{-1} aequale nbB^{-1} seu nb ÷ A^{m ÷ n}, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 30:6)
Assumentes m & n pro quibusvis indicibus dignitatum Altitudinis, & b, c pro numeris quibusvis datis, ponamus vim centripetam esse ut {bA^m + cA^n} ÷ A cub.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 19:2)
VZ ad ZX vel DN ut d ad e, & VG aequalis bb ÷ DN^n, & erit DN aequalis A - O, VG = bb ÷ {A - O}^n, VZ = d ÷ e in A - O, & GD seu NX - VZ - VG aequalis C - {d ÷ e}A + {d ÷ e}O - bb ÷ {A - O}^n.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 82:2)

SEARCH

MENU NAVIGATION