라틴어 문장 검색

et haec quoque prima minoris quantitatis species est. Hic autem numerus huiusmodi est, qui in alterius comparatione productus plus quam semel maioris numerat summam, sua scilicet quantitate cum eo aequaliter inchoans aequaliterque determinans.
(보이티우스, De Arithmetica, Liber primus, De multiplici eiusque speciebus earumque generationibus. 1:8)
Eadem tamen summarum supergressio est in hoc quoque, quae in duplicibus fuit.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:10)
Habebit autem vel duas quintas vel duas septimas vel duas nonas et ita progredientibus, si duas solas partes minoris numeri superhabuerit per easdem partes inparibus numeris minorem maior summa transcendit.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 1:4)
Radices autem proportionum voco numeros in superiore dispositione descriptos, quasi quibus omnis summa supradictae comparationis innititur.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 6:8)
Horum autem eorumque qui sequuntur exempla integre planeque possumus pernotare, si in priorem descriptionem, quam fecimus, cum de superparticulari et multiplici loqueremur, ubi ab uno usque in denariam multiplicationem summa concrevit, diligens velimus acumen intendere.
(보이티우스, De Arithmetica, Liber primus, De eorum exemplis in superiori formula inveniendis. 1:1)
Omnis ergo summa disposita supertripartientes efficiet.
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 35:2)
Atque haec quidem duplex sesqualtera summa producta est;
(보이티우스, De Arithmetica, Liber primus, Demonstratio quemadmodum omnis inaequalitas ab aequalitate processerit. 46:1)
Videbis igitur hoc facto in minorem modum summas reverti et ad principaliorem habitudinem comparationes proportionesque reduci, ut si sit quadrupla proportio, primo ad triplam, inde ad duplam, inde ad aequalitatem usque remeare;
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 1:13)
Idem vero ex his si fiat rem omnem ad aequitatis summas eliquabimus.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 3:9)
Hoc autem cognoscendum est, quod haec signa numerorum, quae posita sunt, quae nunc quoque homines in summarum designatione describunt, non naturali institutione formata sunt.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:6)
Unum enim intervallum duos in se continet motus, ut in tribus intervallis sex sese motuum summa conficiat hoc modo:
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:30)
At vero si his intermisso senario septenarium iungam tota in sedecim summa concrescit, id est quarti quadrati numerositas.
(보이티우스, De Arithmetica, Liber secundus, De quadratorum numerorum generatione rursusque de eorum lateribus 3:6)
Pentagonorum vero summae conficiuntur ex uno super se tetragono et altrinsecus triangulo constituto.
(보이티우스, De Arithmetica, Liber secundus, Qui figurati numeri ex quibus figuratis numeris fiant, inque eo quod triangulus numerus omnium reliquorum principium sit. 1:7)
Videsne igitur, ut primus omnium triangulus cunctorum summas efficiat et omnium procreationibus misceatur?
(보이티우스, De Arithmetica, Liber secundus, Qui figurati numeri ex quibus figuratis numeris fiant, inque eo quod triangulus numerus omnium reliquorum principium sit. 1:23)
Et ad eundem modum cunctae a ceteris multiangulis profectae formae in altioris summae spatia producuntur.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 7:1)

SEARCH

MENU NAVIGATION