라틴어 문장 검색

Et si centro C & intervallo CF describatur circulus FfM occurrens rectis de & AB in f & M, erit M locus ad quem deinceps absque ulteriore resistentia ascenderet, & df velocitas quam acquireret in d.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 42:10)
Nam si corpus, in Medio non resistente, oscillatione integra describeret longitudinem BA, velocitas in loco quovis D foret ut circuli diametro AB descripti ordinatim applicata DE.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 45:2)
erit velocitas DK in Medio resistente ut circuli vel Ellipseos super diametro Ba descripti ordinatim applicata;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 45:5)
tempora autem in circulo sint majora quam in Cycloide in velocitatis ratione reciproca:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 80:2)
ut ex resistentia in circulo inveniatur resistentia in Trochoide, debebit resistentia augeri in duplicata circiter ratione arcus ad chordam, ob velocitatem in ratione illa simplici auctam;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 80:3)
Motus autem pendulorum in gyrum actorum & in orbem redeundo circulos describentium, propterea quod sint uniformes & eo nomine ad investigandam resistentiam datae velocitati competentem longe aptiores videantur, in consilium etiam adhibui.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 104:2)
Faciendo enim ut pendulum circulariter latum duodecies revolveretur, notavi magnitudines circulorum duorum, quos prima & ultima revolutione descripsit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 104:3)
Cujus rei exemplum aliquod habemus in Undis, quae si digito tremulo excitentur, non solum pergent hinc inde secundum plagam motus digiti, sed, in modum circulorum concentricorum, digitum statim cingent & undique propagabuntur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 14:13)
Medium cedendo projectilibus, non recedit in infinitum, sed in circulum eundo pergit ad spatia quae corpus relinquit a tergo.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 15:4)
Igitur quoties corpus tremulum pergit in partem quamcunque, Medium cedendo perget per circulum ad partes quas corpus relinquit, & quoties corpus regreditur ad locum priorem, Medium inde repelletur & ad locum suum priorem redibit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 15:5)
sed ascensus & descensus ille verius fit per circulum, ideoque tempus hac Propositione non nisi quamproxime definitum esse affirmo.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 33:2)
Bisecetur eadem in O, centroque O & intervallo OP describatur circulus SIPi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 43:9)
& quo tempore pendulum illud oscillationem integram ex itu & reditu compositam peragit, eodem pulsus eundo conficiet spatium circumferentiae circuli radio A descripti aequale.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 50:3)
Ergo tempus quo pulsus percurrit spatium BC, est ad tempus oscillationis unius ex itu & reditu compositae, ut BC ad Z × A ÷ PO, id est ut BC ad circumferentiam circuli cujus radius est A. Tempus autem, quo pulsus percurret spatium BC, est ad tempus quo percurret longitudinem huic circumferentiae aequalem, in eadem ratione;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:17)
Estque haec altitudo illa ipsa quam in constructione superioris Problematis nominavimus A. Circuli radio 29042 pedum descripti circumferentia est pedum 182476.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 56:14)

SEARCH

MENU NAVIGATION