라틴어 문장 검색

adeo rectangulum sub axibus est in ratione composita ex dimidiata ratione lateris recti & sesquiplicata ratione axis transversi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 32:3)
Sed hoc rectangulum, per Corollarium Theorematis Sexti, est in ratione composita ex dimidiata ratione lateris recti & integra ratione periodici temporis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 32:4)
Ab umbilico S ad tangentem PR demitte perpendiculum SY & velocitas corporis P erit reciproce in dimidiata ratione quantitatis SYq. ÷ L. Nam velocitas illa est ut arcus quam minimus PQ in data temporis particula descriptus, hoc est (per Lem. VII.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 36:1)
SP × QT ut area dato tempore descripta, id est, per Theor. VI.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 36:3)
requiritur linea quam corpus describit, de loco dato cum data velocitate secundum datam rectam egrediens.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 47:2)
Datis umbilico & axibus transversis describere Trajectorias Ellipticas & Hyperbolicas, quae transibunt per puncta data, & rectas positione datas contingent.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 6:1)
Centro P intervallo AB - SP, si orbita sit Ellipsis, vel AB + SP, si ea sit Hyperbola, describatur circulus HG.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 8:5)
V & intervallo AB describatur circulus FH.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 8:8)
Hac methodo sive dentur duo puncta P, p, sive duae tangentes TR, tr, sive punctum P & tangens TR, describendi sunt circuli duo.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 8:9)
Sit H eorum intersectio communis, & umbilicis S, H, axe illo dato describatur Trajectoria.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 8:10)
Nam Trajectoria descripta (eo quod PH + SP in Ellipsi, & PH - SP in Hyperbola aequatur axi) transibit per punctum P, & (per Lemma superius) tanget rectam TR.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 8:12)
Circa datum umbilicum Trajectoriam Parabolicam describere, quae transibit per puncta data, & rectas positione datas continget.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 10:1)
Sit S umbilicus, P punctum & TR tangens trajectoriae describendae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 12:1)
Centro P, intervallo PS describe circulum FG.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 12:2)
Eodem modo describendus est alter circulus fg, si datur alterum punctum p;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 12:4)

SEARCH

MENU NAVIGATION