라틴어 문장 검색

Sit linea ALCK Parabola, axem habens OL horizonti AK perpendicularem, & requiratur Medii densitas quae faciat ut projectile in ipsa moveatur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 74:2)
Quod si resistentia DK sit in duplicata ratione velocitatis, figura BKTVa Parabola erit verticem habens V & axem OV, ideoque aequalis erit duabus tertiis partibus rectanguli sub Ba & OV quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 46:1)
Si Globus & Cylindrus aequalibus diametris descripti, in Medio raro & Elastico, secundum plagam axis Cylindri, aequali cum velocitate celerrime moveantur:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 26:1)
In ea capiatur LB semidiametro CB aequalis, & ducatur BD quae Sphaeram tangat in B. In AC & BD demittantur perpendiculares BE, DL, & vis qua particula Medii, secundum rectam FB oblique incidendo, Globum ferit in B, erit ad vim qua particula eadem Cylindrum ONGQ axe ACI circa Globum descriptum perpendiculariter feriret in b, ut LD ad LB vel BE ad BC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 28:9)
Sed solidum prius est Parabolois vertice V, axe CA & latere recto CA descriptum, & solidum posterius est cylindrus Paraboloidi circumscriptus:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 28:15)
Ut si base circulari CEBH, quae centro O, radio OC describitur, & altitudine OD, construendum sit frustum coni CBGF, quod omnium eadem basi & altitudine constructorum & secundum plagam axis sui versus D progredientium frustorum minime resistatur:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 31:2)
solidum, quod convolutione figurae ADFGHIE circa axem eundem CB generatur, minus resistitur quam solidum prius;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 32:2)
si modo utrumque secundum plagam axis sui AB progrediatur, & utriusque terminus B praecedat.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 32:3)
Solidum quod figurae hujus revolutione circa axem AB facta describitur, in Medio raro & Elastico ab A versus B velocissime movendo, minus resistetur quam aliud quodvis eadem longitudine & latitudine descriptum Solidum circulare.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 34:3)
consequens est quod si egrediatur oblique per canalem in latus vasis, describet in spatiis non resistentibus Parabolam cujus latus rectum est altitudo aquae in vase supra canalis orificium, & cujus diameter horizonti perpendicularis ab orificio illo ducitur, atque ordinatim applicatae parallelae sunt axi canalis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 50:2)
Si Cylindrus solidus infinitè longus in fluido uniformi & infinito circa axem positione datum uniformi cum motu revolvatur, & ab hujus impulsu solo agatur Fluidum in Orbem, perseveret autem fluidi pars unaquaeque uniformiter in motu suo;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 4:1)
dico quod tempora periodica partium fluidi sunt ut ipsarum distantiae ab axe cylindri.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 4:2)
Sit AFL cylindrus uniformiter circa axem S in orbem actus, & circulis concentricis BGM, CHN, DIO, EKP, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 6:1)
Unde cùm impressiones sunt ut contiguae superficies & harum translationes ab invicem, erunt translationes inversè ut superficies, hoc est inversè ut superficierum distantiae ab axe.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 6:6)
Sunt autem differentiae motuum angularium circa axem ut hae translationes applicatae ad distantias, sive ut translationes directè & distantiae inversè;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 6:7)

SEARCH

MENU NAVIGATION