라틴어 문장 검색

Si igitur ternarium, id est qui ex coacervatione collectus est, per binarium multiplices, qui est ultimus adgregatus, perfectus sine ulla dubitatione nascetur.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:3)
Per hunc igitur si illam coacervationem multiplicaveris, perfectus numerus procreatur.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:8)
Sed de hoc dudum exstitit xxviij perfectus numerus.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:12)
Haec autem est intra millenarium numerum perfecta et suis partibus aequa numerositas.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:17)
Igitur prima unitas virtute atque potentia non etiam actu vel opere et ipsa perfecta est. Nam si primam ipsam sumpsero de proposito ordine numerorum, video primam atque incompositam, quam si per se ipsam multiplico, eadem mihi unitas procreatur.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:18)
Semel enim j solam efficit unitatem, quae partibus suis aequalis est potentia solum, ceteris etiam actu atque opere perfectis.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:19)
Recte igitur unitas propria virtute perfecta est, quod et prima est et incomposita et per se ipsam multiplicata sese ipsam conservat.
(보이티우스, De Arithmetica, Liber primus, De generatione numeri perfecti. 4:20)
Item bis duo iiij sunt, ter tres viiij, quos in semet ipsos multiplicationes primi ordinis perfecerunt.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:3)
Nam in triangulo qui sunt numeri, quae prima superficiei figura est, uno sese tantum numeri praecedunt, qui scilicet, eorum naturam descriptionemque perficiunt;
(보이티우스, De Arithmetica, Liber secundus, De eptagonis eorumque generationibus et communis omnium figurarum inveniendae generationis regula descriptionesque figurarum 2:5)
Perfecta enim pyramis est, quae a qualibet basi profecta usque ad primam vi et potestate pyramidam pervenit, unitatem.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:2)
Igitur cybi aequalibus se spatiis porrigentis et huius formae, quam diximus, gradata distributione dispositae medietates sunt, quae neque cunctis partibus aequales sunt, neque omnibus inaequales, quos Graeci parallelepipedos vocant.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 7:12)
Amplius, quod inpar numerus sola perfici unitate monstratus est, par vero sola dualitate, id est solo binario numero.
(보이티우스, De Arithmetica, Liber secundus, De antelongioribus numeris et de vocabulo numeri parte altera longioris 1:8)
Unde nunc nobis monstrandum est, hac gemina numerorum natura, quadratorum scilicet et parte altera longiorum cunctas numeri species cunctasque habitudines vel ad aliquid relatae quantitatis, ut multiplicium vel superparticularium et ceterorum, vel ad se ipsam consideratae, ut formarum, quas dudum in superiore disputatione descripsimus, informari, ut, quemadmodum mundus ex inmutabili mutabilique substantia, sic omnis numerus ex tetragonis, qui inmutabilitate perficiuntur, et ex parte altera longioribus, qui mutabilitate participiant, probetur esse coniunctus.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:8)
Omnis vero tetragonus, si ei proprium latus addatur, vel eodem rursus dematur, parte altera longior fit. Namque iiij tetragono si quis duo iungat vel duo detrahat, vj addendo perficiet et ij detrahendo.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum quadrati ex parte altera longioribus vel parte altera longiores ex quadratis fiant 1:1)
Hi ergo multiplicati senarium perfecerunt;
(보이티우스, De Arithmetica, Liber secundus, Quod superficies una tantum in proportionalitatibus medietate iungantur, solidi vero numeri duabus medietatibus in medio collocatis 1:14)

SEARCH

MENU NAVIGATION