라틴어 문장 검색

Igitur quotiens unus atque idem terminus ita duobus circum se terminis communicat, ut ad unum dux sit, ad alium comes, haec proportionalitas continua vocatur, ut unus, duo, quattuor.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:14)
Est enim aequalitas in his proportionibus et quemadmodum sunt iiij ad ij, sic sunt ij ad unum, et rursus quemadmodum unus ad duo, sic duo ad quattuor.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:15)
Sic enim sunt quemadmodum duo ad unum, sic octo ad quattuor, et conversim:
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:19)
quemadmodum unus ad duo, sic quattuor ad octo, et permutatim:
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:20)
quemadmodum quattuor ad unum, sic octo ad binarium.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:21)
Post quas proportionum habitudines tres aliae sunt, quae sine nomine feruntur quidem, vocantur autem quarta, quinta, sexta, quae superius dictis oppositae sunt.
(보이티우스, De Arithmetica, Liber secundus, Quae apud antiquos proportionalitas fuerit; quas posteriores addiderint 1:3)
At vero posteri propter denarii numeri perfectionem, quod erat Pythagorae conplacitus, medietates alias quattuor addiderunt, ut in his proportionalitatibus denariae quantitatis corpus efficerent.
(보이티우스, De Arithmetica, Liber secundus, Quae apud antiquos proportionalitas fuerit; quas posteriores addiderint 1:4)
Si igitur in tribus tantum terminis secundum continuam medietatem respexeris vel in quattuor vel in quotlibet aliis secundum disiunctam easdem semper differentias terminorum videbis, tantum solis proportionibus permutatis.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:6)
Nam si aequales terminos intermittas et uno sese in priore dispositione praetereant, si singulos intermittas, solius binarii notabitur differentia, sin vero duos praetereas, ternarii, si tres, quaternarii, si quattuor, quinarii.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:12)
Namque si duos intermittas, ternarius differentiam continebit, si tres, quaternarius, si quattuor, quinarius aeque in continuis proportionibus atque disiunctis.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 3:2)
Ut si ponantur j ij iij, unus et iij quattuor reddunt, duo vero, qui medius inter utrosque est, quaternarii medietas invenitur.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 4:2)
Si enim sint j ij iij iiij, unus et quattuor quinarium creant, ij et iij medii in eundem rursus quinarium surgunt.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 4:6)
Vel si in quattuor terminis, ut sunt ij iiij viij xvj, quemadmodum est primus ad tertium, id est ij ad viij, sic erit secundus ad quartum, id est iiij ad xvj. Utraque enim proportio quadrupla est. Et conversim quemadmodum quartus est ad secundum, ita tertius notatur ad primum.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 4:1)
vel si sit in quattuor terminis disiuncta proportio, quod fit sub utrisque extremitatibus, id duarum medietatum multiplicatione concrescat, ut, si sint ij iiij viij xvj, quod fit ex bis xvj, id ex quater viij reddatur.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 22:3)
Perpensi namque xij ad vj dupli sunt, differentia vero duodenarii et octonarii quaternarius est, octonarii vero et senarii duo. Dupla autem ratione distabunt duobus quattuor comparati.
(보이티우스, De Arithmetica, Liber secundus, De geometrica armonia 1:5)

SEARCH

MENU NAVIGATION