라틴어 문장 검색

Nam attractiones acceleratrices corporum omnium B, C, D versus A, paribus distantiis, sibi invicem aequantur ex hypothesi, & similiter attractiones acceleratrices corporum omnium versus B, paribus distantiis, sibi invicem aequantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 85:1)
Igitur si in data aliqua velocitate cognoscatur resistentia Medii, invenietur velocitas maxima, sumendo ipsam ad velocitatem illam datam in dimidiata ratione, quam habet vis Gravitatis ad Medii resistentiam illam cognitam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 43:2)
ideoque (cum distantiae particularum systematis unius sint ad distantias correspondentes particularum alterius, ut diameter particulae vel partis in systemate priore ad diametrum particulae vel partis correspondentis in altero, & quantitates materiae sint ut densitates partium & cubi diametrorum) resistentiae sunt ad invicem ut quadrata velocitatum & quadrata diametrorum & densitates partium Systematum. Q. E. D. Posterioris generis resistentiae sunt ut reflexionum correspondentium numeri & vires conjunctim.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 8:4)
ut tentarem an resistentia, quam in motis corporibus experimur, tota sit in eorum externa superficie, an vero partes etiam internae in superficiebus propriis resistentiam notabilem sentiant, excogitavi experimentum tale.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 105:3)
Nam si uniformis sit resistentia DK, figura aBKkT rectangulum erit sub Ba & DK, & inde rectangulum sub ½Ba & Aa aequalis erit rectangulo sub Ba & DK, & DK aequalis erit ½Aa. Quare cum DK sit exponens resistentiae, & longitudo penduli exponens gravitatis, erit resistentia ad gravitatem ut ½Aa ad longitudinem Penduli;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 44:1)
Proinde cum resistentiae similium & aequivelocium corporum, in Medio cujus partes distantes se mutuo non fugiunt, sint ut quadrata diametrorum, sunt etiam aequivelocium & celerrime moventium corporum resistentiae in Fluido Elastico ut quadrata diametrorum quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 12:2)
Debebit tamen resistentia tam in aere quam in aqua, si velocitas per gradus in infinitum augeatur, augeri tandem in ratione paulo plusquam duplicata, propterea quod in experimentis hic descriptis resistentia minor est quam pro ratione de corporibus velocissimis in Libri hujus Prop.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 101:3)
constructa & demonstrata sunt, erit vis qua corpus oscillans urgetur in loco quovis D, ad uim resistentia ut arcus CD ad arcum CO, qui semissis est differentiae illius Aa. Ideoque vis qua corpus oscillans urgetur in Cycloidis principio seu puncto altissimo, id est vis gravitatis, erit ad resistentiam ut arcus Cycloidis inter punctum illud supremum & punctum infimum C ad arcum CO;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 26:3)
Positis iisdem attractionum legibus, dico quod corpus exterius Q circa interiorum P & S commune gravitatis centrum C, radiis ad centrum illud ductis, describit areas temporibus magis proportionales, & Orbem ad formam Ellipseos umbilicum in centro eodem habentis magis accedentem, si corpus intimum & maximum his attractionibus perinde atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 79:1)

SEARCH

MENU NAVIGATION