라틴어 문장 검색

Namque in x pyramide super sex additi sunt tres atque unus, qui senarius superat ternarium quantitate, ipsi vero tres unum pluralitate transcendunt, qui unus extremum terminum progressionis offendit.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 4:3)
ut si a xvj tetragono proficiscens usque in novem terminum ponat neque excrescat ad quattuor.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:9)
Igitur cybi aequalibus se spatiis porrigentis et huius formae, quam diximus, gradata distributione dispositae medietates sunt, quae neque cunctis partibus aequales sunt, neque omnibus inaequales, quos Graeci parallelepipedos vocant.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 7:12)
Nam cuiuscunque medietas unus est, ille inpar est, cuius vero duo, hic paritate recepta in gemina aequa disiungitur.
(보이티우스, De Arithmetica, Liber secundus, De antelongioribus numeris et de vocabulo numeri parte altera longioris 1:9)
Nam quinquies quinque, qui fit xxv, ab v progressus in eosdem desinit v. Et si hos rursus quinquies ducas, in eosdem v eorum terminus veniet.
(보이티우스, De Arithmetica, Liber secundus, De circularibus vel sphericis numeris 1:3)
binarii vero medietas.
(보이티우스, De Arithmetica, Liber secundus, Alternatim positis quadratis et parte altera longioribus qui sit eorum consensus in differentiis et in proportionibus 8:3)
Eodemque modo inter ij et iiij tantum ij sunt, qui binarii totum sunt, quaternarii medietas.
(보이티우스, De Arithmetica, Liber secundus, Alternatim positis quadratis et parte altera longioribus qui sit eorum consensus in differentiis et in proportionibus 8:4)
Inter quaternarium vero et senarium idem ij sunt, ad quaternarium medietas, ad senarium pars tertia iij vero, qui sequuntur, qui inter vj et viiij constituti sunt medii, sunt quidem senarii dimidium, pars vero tertia novenarii.
(보이티우스, De Arithmetica, Liber secundus, Alternatim positis quadratis et parte altera longioribus qui sit eorum consensus in differentiis et in proportionibus 8:5)
ut binarius ad unum, quoniam duo sunt termini, duplam obtinet proportionem.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:9)
Sin vero quattuor contra duo compares, hic quoque dupla proportio est. Quos tres terminos si continue consideres, ex duabus proportionibus fit proportionalitas et est proportionalitas unum ad duo et duo ad quattuor.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:10)
Sin vero alius ad unum refertur terminus, alius vero ad alium, necesse est habitudinem disiunctam vocari, ut ad qualitatem quidem proportionis sunt:
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:17)
Confessae quidem et apud antiquiores notae, quaeque ad Pythagorae vel Platonis vel Aristotelis scientiam pervenerunt, hae tres medietates sunt:
(보이티우스, De Arithmetica, Liber secundus, Quae apud antiquos proportionalitas fuerit; quas posteriores addiderint 1:1)
At vero posteri propter denarii numeri perfectionem, quod erat Pythagorae conplacitus, medietates alias quattuor addiderunt, ut in his proportionalitatibus denariae quantitatis corpus efficerent.
(보이티우스, De Arithmetica, Liber secundus, Quae apud antiquos proportionalitas fuerit; quas posteriores addiderint 1:4)
Secundum quem numerum et priores quinque habitudines comparationesque descriptae sunt, ubi quinque maioribus proportionibus, quos vocavimus duces, minores aptavimus alios terminos, quos comites diximus.
(보이티우스, De Arithmetica, Liber secundus, Quae apud antiquos proportionalitas fuerit; quas posteriores addiderint 1:5)
Quae igitur causa est, huiusmodi terminorum habitudinem, id est arithmeticam, cunctis aliis proportionalitatibus anteponere?
(보이티우스, De Arithmetica, Liber secundus, Quod primum de ea, quae vocatur arithmetica proportionalitas, dicendum sit 1:4)

SEARCH

MENU NAVIGATION