라틴어 문장 검색

Quare cum centrum illud ubi corpora non agunt in se invicem, vel quiescit, vel in recta aliqua progreditur uniformiter, perget idem, non obstantibus corporum actionibus inter se, vel semper quiescere, vel semper progredi uniformiter in directum, nisi a viribus in systema extrinsecus impressis deturbetur de hoc statu.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 28:11)
Nam si puncta duo progrediantur uniformi cum motu in lineis rectis & distantia eorum dividatur in ratione data, punctum dividens vel quiescet vel progredietur uniformiter in linea recta, Hoc postea in Lemmate xxiii demonstratur in plano, & eadem ratione demonstrari potest in loco solido.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 27:1)
Augetur vero proportio resistentiae ad pondus, ubi vel gravitas specifica sub aequali magnitudine fit minor, vel Medii densitas major, vel resistentia, ex magnitudine diminuta, diminuitur in minore ratione quam pondus.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 95:8)
Designet jam AV + CV^2 resistentiam Globi in aere cum velocitate V moventis, & cum velocitas maxima, in Casu columnae, quartae sit ad velocitatem maximam in casu columnae primae ut 1 ad 8, & resistentia in Casu columnae quartae ad resistentiam in Casu columnae primae in ratione arcuum differentiae in his casibus, ad numeros oscillationum applicatae, id est ut 2/535 ad 16 ÷ 85½ seu ut 85½ ad 4280:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 98:1)
Igitur si in data aliqua velocitate cognoscatur resistentia Medii, invenietur velocitas maxima, sumendo ipsam ad velocitatem illam datam in dimidiata ratione, quam habet vis Gravitatis ad Medii resistentiam illam cognitam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 43:2)
ideoque (cum distantiae particularum systematis unius sint ad distantias correspondentes particularum alterius, ut diameter particulae vel partis in systemate priore ad diametrum particulae vel partis correspondentis in altero, & quantitates materiae sint ut densitates partium & cubi diametrorum) resistentiae sunt ad invicem ut quadrata velocitatum & quadrata diametrorum & densitates partium Systematum. Q. E. D. Posterioris generis resistentiae sunt ut reflexionum correspondentium numeri & vires conjunctim.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 8:4)
ut tentarem an resistentia, quam in motis corporibus experimur, tota sit in eorum externa superficie, an vero partes etiam internae in superficiebus propriis resistentiam notabilem sentiant, excogitavi experimentum tale.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 105:3)
Proinde cum resistentiae similium & aequivelocium corporum, in Medio cujus partes distantes se mutuo non fugiunt, sint ut quadrata diametrorum, sunt etiam aequivelocium & celerrime moventium corporum resistentiae in Fluido Elastico ut quadrata diametrorum quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 12:2)
Debebit tamen resistentia tam in aere quam in aqua, si velocitas per gradus in infinitum augeatur, augeri tandem in ratione paulo plusquam duplicata, propterea quod in experimentis hic descriptis resistentia minor est quam pro ratione de corporibus velocissimis in Libri hujus Prop.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 101:3)
constructa & demonstrata sunt, erit vis qua corpus oscillans urgetur in loco quovis D, ad uim resistentia ut arcus CD ad arcum CO, qui semissis est differentiae illius Aa. Ideoque vis qua corpus oscillans urgetur in Cycloidis principio seu puncto altissimo, id est vis gravitatis, erit ad resistentiam ut arcus Cycloidis inter punctum illud supremum & punctum infimum C ad arcum CO;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VI. De Motu & resistentia Corporum Funependulorum. 26:3)

SEARCH

MENU NAVIGATION