라틴어 문장 검색

Et sumendo rationes ultimas ubi orbes ad formam circularem accedunt, fit RGq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 18:12)
Quare cum angulus VCP, in descensu corporis ab Apside summa ad Apsidem imam in Ellipsi confectus, sit graduum 180, conficietur angulus VCp, in descensu corporis ab Apside summa ad Apsidem imam in Orbe propemodum circulari, quem corpus quodvis vi centripeta dignitati A^{n - 3} proportionali describit, aequalis angulo graduum 180 ÷ [sqrt]n;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 18:16)
Et sumendo rationes ultimas quae prodeunt ubi orbes ad formam circularem accedunt, fit Gq. ad bT^{m - 1} + cT^{n - 1}, ut Fq. ad mbT^{m - 1} + ncT^{n - 1}, & vicissim Gq. ad Fq. ut bT^{m - 1} + cT^{n - 1} ad mbT^{m - 1} + ncT^{n - 1}.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 21:5)
adeo quod recta VP tanget hanc curvam in puncto P. Circuli nom radius sensim auctus aequetur tandem distantiae CP, & ob similitudinem figurae evanescentis Pnomq & figurae PFGVI, ratio ultima lineolarum evanescentium Pm, Pn, Po, Pq, id est ratio incrementorum momentaneorum curvae AP, rectae CP & arcus circularis BP, ac decrementi rectae VP, eadem erit quae linearum PV, PF, PG, PI respective.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 16:2)
Hinc si corpus T filo rectilineo AT a centro A pendens, describat arcum circularem STRQ, & interea urgeatur secundum lineas parallelas deorsum a vi aliqua, quae sit ad vim uniformem gravitatis, ut arcus TR ad ejus sinum TN:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 46:2)
oblique in superficiem suam facto propelli, & motum inde concipere partim circularem, partim in directum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 74:7)
Generabunt hi eundem motum circularem ac si simul & semel in locum intersectionis aequatorum motuum illorum, quos seorsim generarent, fuissent impressi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 74:21)
eadem ratione erunt vires superficierum omnium circularium in quas utraq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 8:29)
expertus sum) in transitu suo prope corporum vel opacorum vel perspicuorum angulos (quales sunt nummorum ex auro, argento & aere cusorum termini rectanguli circulares, & cultrorum, lapidum aut fractorum vitrorum acies) incurvantur circum corpora, quasi attracti in eadem;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 16:4)
Positis jam demonstratis, dico quod si Tangentes angulorum sectoris Circularis & sectoris Hyperbolici sumantur velocitatibus proportionales, existente radio justae magnitudinis:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 47:1)
Jungantur Dp, DP, & erit sector circularis AtD ut tempus ascensus omnis futuri;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 48:3)
Eodem argumento velocitas in ascensu est ad velocitatem, qua corpus eodem tempore in spatio non resistente omnem suum ascendendi motum amittere posset, ut triangulum ApD ad Sectorem circularem AtD, sive ut recta Ap ad arcum At.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 55:2)
Quare si ad cylindri basem circularem NAO erigatur perpendiculum bHE, & sit bE aequalis radio AC, & bH aequalis BE quad.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 28:12)
Ut si base circulari CEBH, quae centro O, radio OC describitur, & altitudine OD, construendum sit frustum coni CBGF, quod omnium eadem basi & altitudine constructorum & secundum plagam axis sui versus D progredientium frustorum minime resistatur:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 31:2)
Solidum quod figurae hujus revolutione circa axem AB facta describitur, in Medio raro & Elastico ab A versus B velocissime movendo, minus resistetur quam aliud quodvis eadem longitudine & latitudine descriptum Solidum circulare.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 34:3)

SEARCH

MENU NAVIGATION