라틴어 문장 검색

Sicut enim longitudini numerorum aliud intervallum, id est superficiem, ut latitudo ostenderetur, adiecimus, ita nunc latitudini si quis addat eam, quae alias altitudo alias crassitudo alias profunditas appellatur, solidum numeri corpus explebit.
(보이티우스, De Arithmetica, Liber secundus, De numeris solidis. 1:2)
Videtur autem, quemadmodum in planis figuris triangulus numerus primus est, sic in solidis, qui vocatur pyramis, profunditatis esse principium.
(보이티우스, De Arithmetica, Liber secundus, De pyramide, quod ea sit solidarum figurarum principium sicut triangulus planarum 2:1)
secundus vero triangulus est ternarius, quem si cum primo coniunxero, id est cum unitate, quaternaria mihi profunditas pyramidis excrescit.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 1:10)
Dispositis enim in ordinem tetragonis i iiij viiij xvj xxv, quoniam hi solam longitudinem latitudinemque sortiti sunt et altitudine carent, si per latera solam unam multiplicationem recipiant, aequalem provehunt profunditatem.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:2)
Omnis autem cybus, qui ex tetragonorum superficie in profunditatem corporis crevit, per tetragoni scilicet latus multiplicatus, habebit quidem superficies vj, quarum singula planitudo tetragono illi priori aequalis est, latera vero xij, quorum unumquodque singulis his, quae superioris fuere tetragoni, aequum est, et, ut superius demonstravimus, tot unitatum est;
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:17)
huic oppositum contrariumque esse oportebit qui neque longitudinem latitudini neque haec duo profunditati gerat aequalia, sed cunctis inaequalibus, quamvis solida sit figura, ab aequalitate cybi longissime distare videatur.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 7:2)
Etenim quos ad quamlibet illam rem constringendam cuneos formant neque latitudinis neque longitudinis neque altitudinis habita ratione, quantum commodum fuerit, tantum vel altitudini minuitur, vel crassitudini profunditatis augetur.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 7:8)
Alterum enim apud Pythagoram vel sapientiae eius heredes nulli alii nisi tantum binario adscribebatur.
(보이티우스, De Arithmetica, Liber secundus, De antelongioribus numeris et de vocabulo numeri parte altera longioris 1:2)
Binarius autem, numerus primus, est unitati dissimilis, idcirco quod primus ab unitate disiungitur.
(보이티우스, De Arithmetica, Liber secundus, De antelongioribus numeris et de vocabulo numeri parte altera longioris 1:4)
Argumentum autem est, alteritatem in binario numero iuste constitui, quod non dicitur alterum nisi e duobus ab his, inter quos bene loquendi ratio non neglegitur.
(보이티우스, De Arithmetica, Liber secundus, De antelongioribus numeris et de vocabulo numeri parte altera longioris 1:7)
Amplius, quod inpar numerus sola perfici unitate monstratus est, par vero sola dualitate, id est solo binario numero.
(보이티우스, De Arithmetica, Liber secundus, De antelongioribus numeris et de vocabulo numeri parte altera longioris 1:8)
Quare disponantur in ordinem omnes ab uno inpares et sub his omnes a binario numero pares.
(보이티우스, De Arithmetica, Liber secundus, Quod ex inparibus quadrati, ex paribus parte altera longiores fiant 1:4)
Est ergo princeps inparis ordinis unitas, quae ipsa quidem effectrix et quodammodo forma quaedam est inparitatis, quae in tantum eiusdem nec mutabilis substantiae est, ut, cum vel se ipsa multiplicaverit vel in planitudine vel in profunditate, vel si alium quemlibet numerum per se ipsa multiplicet, a prioris quantitatis forma non discrepet.
(보이티우스, De Arithmetica, Liber secundus, Quod ex inparibus quadrati, ex paribus parte altera longiores fiant 4:1)
Paris vero ordinis binarius numerus princeps est, quae dualitas, cum in eodem ordine paritatis sit, tum principium totius est alteritatis.
(보이티우스, De Arithmetica, Liber secundus, Quod ex inparibus quadrati, ex paribus parte altera longiores fiant 4:3)
Namque si se ipsa multiplicet vel per latitudinem vel etiam per profunditatem vel si quem numerum in suam conglobet quantitatem, continuo alter exoritur.
(보이티우스, De Arithmetica, Liber secundus, Quod ex inparibus quadrati, ex paribus parte altera longiores fiant 4:4)

SEARCH

MENU NAVIGATION