라틴어 문장 검색

& propterea summa omnium rectangulorum in circulo toto ad summam totidem maximorum, ut area circuli totius ad rectangulum sub circumferentia tota & radio;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 11:9)
Unde si circuli totius circumferentia NAn dividatur in particulas aequales Aa, tempus quo Sol percurrat particulam Aa, si circulus quiesceret, erit ad tempus quo percurrit eandem particulam, si circulus una cum Nodis circa centrum T revolvatur, reciprocè ut 9,0829032 ATq.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 13:11)
) ut tangens DG ad circuli BED circumferentiam totam, atque angulus iste ad motum medium Nodorum addatur;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 17:16)
hoc est ut circumferentia QAqa ducta in AZ × TZ × Pp ÷ PG ad 2MP × AT quad.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 25:6)
hoc est ut diameter ducta in Pp ÷ PG, ad circumferentiam;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 27:10)
& annuli motus iste circa axem Cylindri uniformiter continuatus, ad ejusdem motum uniformem circa diametrum propriam, eodem tempore periodico factum, ut circumferentia circuli ad duplum diametri.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 61:3)
Unde etiam si orbes ad centrum densiores sint quàm ad circumferentiam, idem erit motus aequinoctiorum Terrae totius ac prius;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 7:9)
Tum per puncta A, B, C, duc circumferentiam circuli, eamque biseca in i, ut & chordam AC in I. Age occultam Si secantem AC in [lambda], & comple parallelogrammum iI[lambda][mu].
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 6:4)
Deinde si per G, g, [gamma] ducatur circumferentia circuli Gg[gamma] secans rectam [tau]C in Z:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 8:2)
Et si in AC, ac, [alpha][kappa] capiantur AF, af, [alpha][phi] ipsis CG, cg, [kappa][gamma] respectivè aequales, & per puncta F, f, [phi] ducatur circumferentia circuli Ff[phi] secans rectam AT in X;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 8:4)
Ipsius autem theatri conformatio sic est facienda, uti, quam magna futura est perimetros imi, centro medio conlocato circumagatur linea rotundationis, in eaque quattuor scribantur trigona paribus lateribus, intervallis extremam lineam circinationis tangant, quibus etiam in duodecim signorum caelestium astrologi ex musica convenientia astrorum ratiocinantur.
(비트루비우스 폴리오, 건축술에 관하여, LIBER QUINTUS, 6장1)
adeo ut Cycloidum perimetri & perimetrorum partes similes, aequalia erunt tempora quibus perimetrorum partes similes Oscillationibus similibus describuntur, & propterea Oscillationes omnes erunt Isochronae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 36:3)
ea in perimetro HIK aequalis vi centripetae in perimetro globi QOS (Vide Fig. Prop. L. & LI.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 33:3)
patet quod motus perpetuò transfertur à centro ad circumferentiam Vorticis, & per infinitatem circumferentiae absorbetur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 21:3)
Eodem argumento, si intervallum poli & puncti, quo spiralis describitur, capiatur Ovalis perimetro abscissae proportionale, probari potest quod longitudo perimetri nequit per finitam aequationem generaliter exhiberi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 11:1)

SEARCH

MENU NAVIGATION