라틴어 문장 검색

exsilium autem illis, quibus quasi circumscriptus est habitandi locus, non iis, qui omnem orbem terrarum unam urbem esse ducunt.
(마르쿠스 툴리우스 키케로, Paradoxa stoicorum ad M. Brutum, Paradoxon II, 1장 2:2)
dico quod ultimae rationes, quas habent ad se invicem figura inscripta AKbLcMdD, circumscripta AalbmcndoE, & curvilinea AabcdE, sunt rationes aequalitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 6:8)
Nam figurae inscriptae & circumscriptae differentia est summa parallelogrammorum Kl + Lm + Mn + Do, hoc est (ob aequales omnium bases) rectangulum sub unius basi Kb & altitudinum summa Aa, id est rectangulum ABla.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 7:1)
Ergo, per Lemma I, figura inscripta & circumscripta & multo magis figura curvilinea intermedia fiunt ultimo aequales. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 7:3)
Hoc erit majus quam differentia figurae inscriptae & figurae circumscripta, at latitudine sua AF in infinitum diminuta, minus fiet quam datum quodvis rectangulum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 10:2)
Ut & figura rectilinea quae tangentibus eorundem arcuum circumscribitur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 13:2)
Et si per B & A ducantur plures rectae BE, BD, AF, AG, secantes tangentem AD & ipsius parallelam BF, ratio ultima abscissarum omnium AD, AE, BF, BG, chordaeq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 31:2)
erunt semper abscissae laterum partes PR & PT ad invicem in data ratione.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 25:3)
Et contra, si partes illae abscissae sunt ad invicem in data ratione, punctum D tanget Sectionem Conicam per puncta quatuor A, B, P, C transeuntem.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 25:4)
literarum ordine constituatur Trapezium fghi Trapezio FGHI simile, & circumscribatur Trajectoria specie data, solvetur Problema.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 132:14)
Nulla extat figura Ovalis cujus area, rectis pro lubitu abscissa, possit per aequationes numero terminorum ac dimensionum finitas generaliter inveniri.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 9:1)
Nequit ergo intersectio rectae & spiralis per aequationem finitam generaliter inveniri, & idcirco nulla extat Ovalis cujus area, rectis imperatis abscissa, possit per talem aequationem generaliter exhiberi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:25)
Eodem argumento, si intervallum poli & puncti, quo spiralis describitur, capiatur Ovalis perimetro abscissae proportionale, probari potest quod longitudo perimetri nequit per finitam aequationem generaliter exhiberi.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 11:1)
ad axem Ellipseos ordinatim applicata PR, ex proportione diametrorum Ellipseos, dabitur circuli circumscripti AQB ordinatim applicata RQ, quae sinus est anguli ACQ existente AC radio.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 26:7)
dein juncta CR ducatur recta CP, quae aequalis sit abscissae CT, angulumq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VIII. De Inventione Orbium in quibus corpora viribus quibuscunq; centripetis agitata revolventur. 14:3)

SEARCH

MENU NAVIGATION