라틴어 문장 검색

Nam si aestimetur Agentis actio ex ejus vi & velocitate conjunctim;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 41:10)
Errores autem qui viribus proportionalibus similiter applicatis generantur, sunt ut vires & quadrata temporum conjunctim.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 46:2)
summa virium in dato tempore erit ut velocitas illa & numerus reflexionum conjunctim, hoc est (si Polygonum detur specie) ut longitudo dato illo tempore descripta & longitudo eadem applicata ad Radium circuli, id est ut quadratum longitudinis illius applicatum ad Radium;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 36:5)
adeo, neutro dato, ut vis centripeta & quadratum temporis conjunctim, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 45:4)
Est autem tempus ut area SPQ, ejus dupla SP × QT, id est ut SP & QT conjunctim, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 45:6)
Patet EP aequalem esse semiaxi majori AC, eo quod acta ab altero Ellipseos umbilico H linea HI ipsi EC parallela, (ob aequales CS, CH) aequentur ES, EI, adeo ut EP semisumma sit ipsarum PS, PI, id est (ob parallelas HI, PR & angulos aequales IPR, HPZ) ipsorum PS, PH, quae conjunctim axem totum 2AC adaequant.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 4:2)
ut rectangulum XHY ad rectangulum BHD (seu rectangulum CGP ad rectangulum DGB) & rectangulum BHD ad rectangulum PIC conjunctim.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 57:8)
Sin AD & DG (vel earum alterutra) ascendebant ad duas dimensiones in aequatione prima, ascendent itidem ad & dg ad duas in aequatione secunda.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 66:13)
Et sic de tribus vel pluribus dimensionibus.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 66:14)
Indeterminatae ad, dg in aequatione secunda & AD, DG in prima ascendent semper ad eundem dimensionum numerum, & propterea lineae, quas puncta G, g tangunt, sunt ejusdem ordinis Analytici.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 66:15)
Nulla extat figura Ovalis cujus area, rectis pro lubitu abscissa, possit per aequationes numero terminorum ac dimensionum finitas generaliter inveniri.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 9:1)
ascendit ad tot dimensiones quot sunt intersectiones.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:9)
Quoniam circuli duo se mutuo secant in punctis duobus, intersectio una non invenitur nisi per aequationem duarum dimensionum, qua intersectio altera etiam inveniatur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:10)
Quoniam duarum sectionum Conicarum quatuor esse possunt intersectiones, non potest aliqua earum generaliter inveniri nisi per aequationem quatuor dimensionum, qua omnes simul inveniantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:11)
Eadem de causa intersectiones binae rectarum & sectionum Conicarum prodeunt semper per aequationes duarum dimensionum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 10:16)

SEARCH

MENU NAVIGATION