라틴어 문장 검색

Factio inferior et debilior in coniunctione plerunque firmior et constantior.
(FRANCIS BACON, SERMONES FIDELES SIVE INTERIORA RERUM, XLIX [ = English LI] DE FACTIONIBUS 1:7)
Donec igitur aut acriores oculi, quod vix erediderim, aut instructior ars, quod fieri posse nemo negaverit, in communem usum protulerin, quae Blume investigavit, nihil aliud restat, nisi ut ea, quae fertur Boetii geometria, edatur, quam artem geometricam auctorem nominasse testantur loci, quos in pag. 434 sub voce ars attuli.
(보이티우스, De Arithmetica, Prefationes, Praefatio Editoris 4:15)
Rursus cum aliquam geometricam formam dicero, est illi simul numerorum nomen inplicitum;
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:30)
cum numeros dixero, nondum ullam formam geometricam nominavi.
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:31)
In astronomia enim circuli, sphera, centrum, paralellique circuli mediusque axis est, quae omnia geometricae disciplinae curae sunt.
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:40)
ut, quoniam articularis vocis elementa sunt litterae, ab eis est syllabarum progressa coniunctio et in easdem rursus terminatur extremas;
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum ad aequalitatem omnis inaequalitas reducatur 1:3)
Nunc autem nobis de his numeris sermo futurus est, qui circa figuras geometricas et earum spatia demensionesque versantur, id est de linearibus numeris et de triangularibus vel quadratis ceterisque, quos sola pandit plana demensio, nec non de inaequali laterum compositione coniunctis;
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:4)
de solidis etiam, id est cybis et sphericis vel pyramidis, laterculis etiam vel tignulis et cuneis, quae omnia quidem geometricae propriae considerationis sunt, sed sicut ipsa geometriae scientia ab arithmetica velut quadam radice ac matre producta est, ita etiam eius figurarum semina in primis numeris invenimus, planum siquidem fecimus, quod omnes disciplinas haec interempta consumeret, quas minime constituta firmaret.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:5)
Haec enim tria circa omne corpus inseparabili coniunctione versantur, et in natura corporum constituta sunt.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:33)
Est etiam in his haec naturae subtilitas et inmutabilis ordinatio, quod tot unitates unusquisque quadratorum retinebit in latere, quanti fuerint numeri ad coniunctionem propriam congregati.
(보이티우스, De Arithmetica, Liber secundus, De quadratorum numerorum generatione rursusque de eorum lateribus 3:8)
In hac igitur coniunctione necesse est, ut semper, qui ultimus est coniugatorum numerorum, is quasi quodammodo basis sit. Cunctis enim latior invenitur.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 4:1)
tetragonos quoque ad eundem modum considerari manifestum est. Nam quod eorum compositio et coniunctio ex inparibus fit, inmutabili eos naturae pronuntiabo coniunctos.
(보이티우스, De Arithmetica, Liber secundus, Quod principaliter eiusdem quidem sit substantiae unitas, secundo vero loco inpares numeri, tertio quadrati, et quod principaliter dualitas alterius sit substantiae, secundo vero loco pares numeri, tertio parte altera longiores 1:3)
Illud igitur perspiciendum est, quod, si idem tetragoni et parte altera longiores disponantur, ita ut alternatim sibi permixti sint, tanta in his est coniunctio, ut alias sibi in eisdem proportionibus communicent, discrepent autem differentiis, alias vero differentiis pares sint, proportionibus distent.
(보이티우스, De Arithmetica, Liber secundus, Alternatim positis quadratis et parte altera longioribus qui sit eorum consensus in differentiis et in proportionibus 1:1)
Et sequentes quattuor quartum, et qui sequuntur quinque quintum, et ad eundem modum quotus quisque cybus efficitur, tot coniunctione inpares apponuntur.
(보이티우스, De Arithmetica, Liber secundus, Cybos eiusdem participare substantiae, quod ab inparibus nascantur 3:4)
nunc res admonet quaedam de proportionibus disputantes, quae nobis vel ad musicas speculationes vel ad astronomicas subtilitates vel ad geometricae considerationis vim vel etiam ad veterum lectionum intellegentiam prodesse possint, arithmeticam introductionem commodissime terminare.
(보이티우스, De Arithmetica, Liber secundus, De proportionalitatibus 1:2)

SEARCH

MENU NAVIGATION