라틴어 문장 검색

sed binarius unitatis medietate dividitur, quae unitas naturaliter singularis non recipit sectionem.
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 1:4)
In hoc igitur, quoniam pares dispositiones sunt, una medietas non potest inveniri.
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 13:5)
Si autem inpares terminos ponamus, id est summas -- idem enim terminos quod summas nomino -- secundum inparis naturam potest una medietas inveniri atque ipsa una sibi est responsura.
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 14:1)
In eo namque ordine numerorum, ubi extremus terminus lxxiiij pluralitate concluditur, sola invenitur una medietas, id est viij, quam si octies id est in semet ipsum multiplices lxiiij explicabit, atque idem reddent illi, qui super hanc meidetatem sunt, ut dudum hi, qui super duas positi, faciabant.
(보이티우스, De Arithmetica, Liber primus, De numero pariter pari eiusque proprietatibus. 17:2)
ij vj x xiiij xviij xxij, quos si dividas, unam recipient sectionem ceteram repudiantes, quod secunda divisio ab inparis medietate partis excluditur.
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 4:5)
Contrariae vero esse dicuntur hae species numerorum, id est pariter par et pariter inpar, quod in numero pariter inpari sola divisionem recipit maior extremitas, in illo vero solus minor terminus sectione solutus est, et quod in forma pariter paris numeri ab extremitatibus incipienti et usque ad media progredienti, quod continentur sub extremis terminis, idem est illi, quod continentur sub intra se positis summulis atque hoc idem usquedum ad duas medietates fuerit ventum in dispositionibus scilicet paribus;
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 4:10)
si autem fuerint inpares dispoxitiones, quod ab una medietate conficitur, hoc idem sub altrinsecus positis partibus procreatur, atque hoc usquedum ad extremitates progressio fiat.
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 4:11)
Quod si inpar sit ordo, ut est ij iiij viij, idem facient extremi, quod medietas;
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 4:13)
Si vero fuerint duae medietates iunctae, ipsoae utraeque aequales erunt super se terminis constitutis, ut est in hoc ordine ij vj x xiij.
(보이티우스, De Arithmetica, Liber primus, De numero pariter inpari eiusque proprietatibus. 4:16)
Inpariter par numerus est ex utrisque confectus et medietatis loco gemina extremitate concluditur, ut, quo ab utroque discrepet, eadem ad alterutrum congnatione iugatur.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:1)
Hi enim possunt in medietates sine aliqua dubitatione solvuntur.
(보이티우스, De Arithmetica, Liber primus, De numero inpariter pari eiusque proprietatibus deque eius ad pariter parem et pariter inparem cognatione 1:3)
Et rurus xxviij et xij si iungas, faciunt xl, quorum xx medietas medius eorum terminus invenitur.
(보이티우스, De Arithmetica, Liber primus, Descriptionis ad inpariter paris naturam pertinentis expositio 1:3)
At vero ubi duas meidetates habent, utraeque extremitates iuncate utrisque medietatibus aequales fiunt, ut xij et xxvj, cum iunxeris, fiunt xlviij.
(보이티우스, De Arithmetica, Liber primus, Descriptionis ad inpariter paris naturam pertinentis expositio 1:4)
Horum si medietates sibimet applicaveris, id est xx et xxviij, idem erit.
(보이티우스, De Arithmetica, Liber primus, Descriptionis ad inpariter paris naturam pertinentis expositio 1:5)
Rursus si ad longitudinem respicias, ubi duo termini unam medietatem habent, quod fit ex multiplicatis extremitatibus, hoc sit, si medius terminus suae capiat pluralitatis augmenta.
(보이티우스, De Arithmetica, Liber primus, Descriptionis ad inpariter paris naturam pertinentis expositio 2:1)

SEARCH

MENU NAVIGATION