라틴어 문장 검색

CCCLX pedis I S. Cum ergo foraminis magnitudo fuerit instituta, describatur scutula, quae graece περίτρητοσ appellatur, cuius longitudo foraminum vel, latitudo duo et sextae partis.
(비트루비우스 폴리오, 건축술에 관하여, LIBER DECIMUS, 11장20)
Corporum duorum S & P circa commune gravitatis centrum C revolventium tempus periodicum esse ad tempus periodicum corporis alterutrius P, circa alterum immotum S gyrantis & figuris quae corpora circum se mutuo describunt figuram similem & aequalem describentis, in dimidiata ratione corporis alterius S, ad summam corporum S + P.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 15:1)
Hinc GH est ad AS, ut tempus quo corpus descripsit arcum AP ad tempus quo corpus descripsit arcum inter verticem A & perpendiculum ad axem ab umbilico S erectum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VI. De inventione motuum in Orbibus datis. 5:2)
& umbilicis S, H, axe transverso ipsam VH aequante, describatur Trajectoria.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 18:7)
Centro C intervallo Cn vel Ck describi intelligetur circulus secans lineas mr, mn productas in s & t, & erit rectangulum mn × mt aequale rectangulo mk × ms, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 6:20)
Nam concipe corpus C quam minima temporis particula lineolam Cc cadendo describere, & interea corpus aliud K, uniformiter in circulo OKk circa centrum S gyrando, arcum Kk describere.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 20:1)
super diametro Kk descripto, secetur producta recta VR in H, & umbilicis S, H, axe transverso rectam HV aequante, describatur Trajectoria.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 20:5)
Designet igitur F aream foraminis, A altitudinem aquae foramini perpendiculariter incumbentis, P pondus ejus, AF quantitatem ejus, S spatium quod dato quovis tempore T in vacuo libere cadendo describeret, & V velocitatem quam in fine temporis illius cadendo acquisierit:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 48:1)
Et corpora P, p viribus aequalibus semper attracta describent circum centra quiescentia C & s figuras similes PQV, pqv, quarum posterior pqv similis est & aequalis figurae quam corpus P circum corpus mobile S describit. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 9:17)
una tendente ad S & oriunda a mutua attractione corporum S & P. Hac vi sola corpus P, circum corpus S sive immotum, sive hac attractione agitatum, describere deberet & areas, radio PS temporibus proportionales, & Ellipsin cui umbilicus est in centro corporis S. Patet hoc per Prob. VI.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 50:10)
Super diametro AS (distantia corporis a centro sub initio) describe semicirculum ADS, ut & huic aequalem semicirculum OKH circa centrum S. De corporis loco quovis C erige ordinatim applicatam CD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 27:1)
Positis iisdem attractionum legibus, dico quod corpus exterius Q circa interiorum P & S commune gravitatis centrum C, radiis ad centrum illud ductis, describit areas temporibus magis proportionales, & Orbem ad formam Ellipseos umbilicum in centro eodem habentis magis accedentem, si corpus intimum & maximum his attractionibus perinde atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 79:1)
ex demonstratione superioris Propositionis, tempora quibus arcus quivis similes PQ & pq describuntur, sunt in dimidiata ratione distantiarum CP & SP vel sp, hoc est, in dimidiata ratione corporis S ad summam corporum S + P. Et componendo, summae temporum quibus arcus omnes similes PQ & pq describuntur, hoc est tempora tota quibus figurae totae similes describuntur, sunt in eadem dimidiata ratione. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 16:2)
Nam si descriptae Ellipses essent sibi invicem aequales, tempora periodica, per Theorema superius, forent in dimidiata ratione corporis S ad summam corporum S + P. Minuatur in hac ratione tempus periodicum in Ellipsi posteriore, & tempora periodica evadent aequalia, Ellipseos autem axis transversus per Theorema VII.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 19:1)
Iisdem positis, dico quod area figurae DES, radio indefinito SD descripta, aequalis sit areae quam corpus, radio dimidium lateris recti figurae DES aequante, circa centrum S uniformiter gyrando, eodem tempore describere potest.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. VII. De Corporum Ascensu & Descensu Rectilineo. 18:1)

SEARCH

MENU NAVIGATION