라틴어 문장 검색

Si ab Ellipseos vel Hyperbolae cujusvis umbilicis duobus S, H, ad punctum quodvis tertium V inflectantur rectae duae SV, HV, quarum una HV aequalis sit axi transverso figurae, altera SV a perpendiculo TR in se demisso bisecetur in T;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 3:1)
perpendiculum illud TR sectionem Conicam alicubi tangit:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 3:2)
Ad tangentem TR demittatur perpendiculum ST, & producatur ea ad V ut sit TV aequalis ST;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 8:6)
Centris B, C, intervallis BK, CL, describe circulos duos, & ad rectam KL, quae tangat eosdem in K & L, demitte perpendiculum SG, idemq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 16:4)
Sit enim H umbilicus alter figurae descriptae, & cum sit SA ad AG ut Sa ad aG, erit divisim Sa - SA seu SH ad aG - AG seu Aa in eadem ratione, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 16:7)
Ab umbilico in tangentes demitte perpendicula ST, St & produc eadem ad V, v, ut sint TV, tv aequales TS, ts.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 18:3)
Biseca Vv in O, & erige perpendiculum infinite OH, rectamq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 18:4)
In tangentem TR demitte perpendiculum ST, & produc idem ad V, ut sit TV aequalis ST.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 22:5)
Si duae ex tribus lineis, puta AZ & BZ aequantur, punctum Z locabitur in perpendiculo bisecante distantiam AB, & locus alius rectilineus invenietur ut supra. Q. E. I.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 28:2)
Detur umbilicus S, punctum P, & tangens TR, & inveniendus sit umbilicus alter H. Ad tangentem demitte perpendiculum ST, & produc idem ad Y, ut sit TY aequalis ST, & erit YH aequalis axi transverso.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 34:1)
Nam si demittantur ad GF perpendicula CI, DK, erit IC ad HB ut EC ad EB, hoc est ut SC ad SB;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 37:10)
Jacent ergo puncta B, C, D in Conisectione circa umbilicum S ita descripta, ut rectae omnes ab umbilico S ad singula Sectionis puncta ductae, sint ad perpendicula a punctis iisdem ad rectam GK demissa in data illa ratione.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IV. De Inventione Orbium Ellipticorum, Parabolicorum & Hyperbolicorum ex umbilico dato. 37:13)
1) ita rectangulum QPr est ad rectangulum SPt, ac divisim ita rectangulum QPR est ad rectangulum PS × PT. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 6:7)
erit ex natura sectionum Conicarum, ut EC ad CA ita CA ad LC, & ita divisim EC - CA ad CA - CL seu EA ad AL, & composite EA ad EA + AL seu EL ut EC ad EC + CA seu EB;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 85:3)
mutuo secent in O, erit (ex aequo perturbate) AF ad BQ ut AP ad BG, & divisim ut FP ad GQ, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 86:3)

SEARCH

MENU NAVIGATION