라틴어 문장 검색

Hoc quoque signum est duarum extremitatum mediam esse quodammodo geometricam proportionem.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:8)
Quod si se ipsae extremitates multiplicent et fiant tres sexies, xviij conficiunt, quod est prioris summae dimidium.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:21)
In triplicibus quoque extremitatibus maior differentia ad minorem differentiam quadrupla est et bis diapason symphoniam emittit.
(보이티우스, De Arithmetica, Liber secundus, Quare dicta sit armonica medietas ea, quae digesta est 10:1)
Diapason vero et diapente, quae triplicis obtinent rationem, fit ab extremitatum differentia ad differentiam minorem.
(보이티우스, De Arithmetica, Liber secundus, De geometrica armonia 2:4)
Et sint quidem primo pares positae quaedam extremitates, inter quas has omnes medietates oporteat internectere, x et xl. Prius igitur arithmetica medietas aptetur.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 1:4)
et extremitatum adgregatio duplex est medietate;
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 1:10)
et tanto minor est numerus, qui fit ex multiplicatis extremitatibus, ab eo, qui fit ex multiplicata medietate, quantum eorum differentiae multiplicatae restituunt;
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 1:12)
et quod continetur ab extremitatibus, aequum est ei, quod a multiplici medietate conpletur.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 2:3)
Si vero armonicam medietatem coniungere velim, xvj mihi numerus inter extremitates utrasque ponendus est, ut sit hoc modo:
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 3:1)
Geometricam vero si rationem vestiges, eius numeri, qui sub utrisque extremitatibus continetur, tetragonicum latus inquire, et hunc medium pone.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 5:8)
Est autem proprium in hac quoque dispositione, quod illud, quod continetur sub maiore termino et medietate duplum est eo, quod sub utrisque extremitatibus continetur.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 2:6)
Secunda vero inter quattuor, sed octava in ordine proportionalitas est, quotiens in tribus terminis quemadmodum sunt extremitates ad se invicem comparatae, sic eorum differentia ad maiorum terminorum differentiam, ut sunt vj vij viiij.
(보이티우스, De Arithmetica, Liber secundus, De quattuor medietatibus, quas posteri ad implendum denarium limitem adiecerunt 1:8)
Arithmetica prima j ij iij
(보이티우스, De Arithmetica, Liber secundus, Dispositio decem medietatum 2:1)
In quattuor enim terminis si fuerit quemadmodum primus ad tertium sic secundus ad quartum, proportionum ratione scilicet custodita, geometrica medietas explicatur, et quod continetur sub extremitatibus, aequum erit ei, quod sub utraque medietate ad se invicem multiplicata conficitur.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:4)
Si vero inter iiij qui est tertius terminus aequa parte quarti quartum terminum superet et aequa primi a primo superetur, armonica huiusmodi proportio medietasque perspicitur, et quod continetur sub extremorum adgregatione et multiplicatione medietatis duplex est eo, quod sub utraque extremitate conficitur.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:6)

SEARCH

MENU NAVIGATION