라틴어 문장 검색

Eodem autem modo haec quoque medietas geometricae contraria est, quemadmodum et quinta, propter proportionem differentiarum a minoribus ad maiores terminos conversam.
(보이티우스, De Arithmetica, Liber secundus, De tribus medietatibus, quae armonicae et geometricae contrariae sunt 3:4)
Geometrica secunda j ij iiij
(보이티우스, De Arithmetica, Liber secundus, Dispositio decem medietatum 3:1)
Contraria geometricae quinta ij iiij v
(보이티우스, De Arithmetica, Liber secundus, Dispositio decem medietatum 6:1)
Contraria geometricae sexta j iiij vj
(보이티우스, De Arithmetica, Liber secundus, Dispositio decem medietatum 7:1)
Haec autem huiusmodi invenietur, si duobus terminis constitutis, qui ipsi tribus creverint intervallis, longitudine latitudine et profunditate, duo huismodi termini medii fuerint constituti et ipsi tribus intervallis notati, qui vel ab aequalibus per aequales aequaliter sint producti vel ab inaequalibus ad inaequalia inaequaliter, vel ab inaequalibus ad aequalia aequaliter, vel quolibet alio modo, atque ita, cum armonicam proportionem custodiant alio tamen modo comparati faciant arithmeticam medietatem hisque geometrica medietas, quae inter utrasque versatur, deesse non possit.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:3)
In quattuor enim terminis si fuerit quemadmodum primus ad tertium sic secundus ad quartum, proportionum ratione scilicet custodita, geometrica medietas explicatur, et quod continetur sub extremitatibus, aequum erit ei, quod sub utraque medietate ad se invicem multiplicata conficitur.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:4)
In his igitur geometrica proportionalitas invenitur, si xij ad viij vel viiij ad vj comparemus.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:8)
Geometrica ergo proportio est huiusmodi.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:11)
In his ergo geometricam arithmeticamque medietatem perspeximus.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:15)
Quod si se extremitates multiplicent, vj scilicet et xij, facient lxxij, quo numero cxliiij duplus est. lnveniemus hic quoque omnes musicas consonantias.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:19)
donec blandiente profectu, quamquam exiguae uocis et fuscae, prodire in scaenam concupiit, subinde inter familiares Graecum prouerbium iactans occultae musicae nullum esse respectum.
(가이우스 수에토니우스 트란퀼루스, 황제전, Nero, 20장 1:3)
ne illud quidem physici, credere aliquid esse minimum, quod profecto numquam putavisset, si a Polyaeno, familiari suo, geometrica discere maluisset quam illum etiam ipsum dedocere.
(마르쿠스 툴리우스 키케로, 최선과 최악에 관하여, LIBER PRIMUS 26:2)
Polyaenus geometricorum peritus 9 15 Polyclitus statuarius 84 9 Polycrates Samius 201 19 sqq.
(마르쿠스 툴리우스 키케로, 최선과 최악에 관하여, (NUMERI PAGINAS ET VERSUS INDICANT)399)
quem cum ex alto ignotas ad terras tempestas et in desertum litus detulisset, timentibus ceteris propter ignorationem locorum animadvertisse dicunt in arena geometricas formas quasdam esse descriptas;
(마르쿠스 툴리우스 키케로, 국가론, Liber Primus 46:2)
Quaero etiam, si velim scribere quid aut legere aut canere vel voce vel fidibus aut geometricum quiddam aut physicum aut dialecticum explicare, somniumne exspectandum sit an ars adhibenda;
(마르쿠스 툴리우스 키케로, De Divinatione (ed. C. F. W. Müller), M. TULLII CICERONIS DE DIVINATIONE LIBER SECUNDUS. 181:5)

SEARCH

MENU NAVIGATION