라틴어 문장 검색

Est igitur decrementum lineae VP, id est incrementum lineae BV - VP, ad incrementum lineae curvae AP in data ratione CB ad 2CE, & propterea (per Corol. Lem. IV.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 16:8)
Ergo si actio corporis longinqui Q, qua vis illa diminuitur, augeatur ac diminuatur per vices, augebitur simul ac diminuetur Radius SP per vices, & tempus periodicum augebitur ac diminuetur in ratione composita ex ratione sesquiplicata Radii & ratione dimidiata qua vis illa centripeta corporis centralis S per incrementum vel decrementum actionis corporis longinqui Q diminuitur vel augetur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 58:12)
Cum autem pendeat Apsidum progressus vel regressus a decremento vis centripetae facto in majori vel minori quam duplicata ratione distantiae SP, in transitu corporis ab Apside ima ad Apsidem summam;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 60:2)
Igitur si ratio incrementi & decrementi vis centripetae singulis revolutionibus augeatur, augebitur semper Excentricitas;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 61:8)
Jam vero in Systemate corporum S, P, Q, ubi Apsides orbis PAB sunt in quadraturis, ratio illa incrementi ac decrementi minima est, & maxima fit ubi Apsides sunt in Syzygiis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 61:10)
At si consideretur ratio incrementi vel decrementi totius in progressu inter Apsides, haec minor est quam duplicata distantiarum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 61:12)
Est igitur ratio decrementi & incrementi totius in transitu inter Apsides, minima in quadraturis, maxima in Syzygiis:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 61:16)
Unde vicissim, ex viribus quibus corpora similia trahunt corpuscula ad se similiter posita, colligi potest ratio decrementi virium particularum attractivarum in recessu corpusculi attracti;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 11:2)
si modo decrementum illud sit directe vel inverse in ratione aliqua distantiarum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 11:3)
Dato corpore attractivo, invenire rationem decrementi virium centripetarum in ejus puncta singula tendentium.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 42:1)
E corpore dato formanda est Sphaera vel Cylindrus aliave figura regularis, cujus lex attractionis, cuivis decrementi rationi congruens (per Prop. LXXX.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 43:1)
Dein factis experimentis invenienda est vis attractionis in diversis distantiis, & lex attractionis in totum inde patefacta dabit rationem decrementi virium partium singularum, quam invenire oportuit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 43:5)
Datur ergo ratio incrementi lineae AD ad decrementum lineae DB;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 20:8)
& propterea si in axe AB sumatur ubivis punctum C, per quod curva CDE transire debet, & capiatur ipsius AC incrementum CM, ad ipsius BC decrementum CN in data ratione;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 20:9)
Dividatur tempus in particulas aequales, & si ipsis particularum initiis agat vis resistentiae impulsu unico, quae sit ut velocitas, erit decrementum velocitatis singulis temporis particulis ut eadem velocitas.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 10:2)

SEARCH

MENU NAVIGATION