라틴어 문장 검색

In ea capiatur LB semidiametro CB aequalis, & ducatur BD quae Sphaeram tangat in B. In AC & BD demittantur perpendiculares BE, DL, & vis qua particula Medii, secundum rectam FB oblique incidendo, Globum ferit in B, erit ad vim qua particula eadem Cylindrum ONGQ axe ACI circa Globum descriptum perpendiculariter feriret in b, ut LD ad LB vel BE ad BC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 28:9)
Rursus efficacia hujus vis ad movendum globum secundum incidentiae suae plagam FB vel AC, est ad ejusdem efficaciam ad movendum globum secundum plagam determinationis suae, id est secundum plagam rectae BC qua globum directe urget, ut BE ad BC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 28:10)
Et conjunctis rationibus, efficacia particulae, in globum secundum rectam FB oblique incidentis, ad movendum eundem secundum plagam incidentiae suae, est ad efficaciam particulae ejusdem secundum eandem rectam in cylindrum perpendiculariter incidentis, ad ipsum movendum in plagam eandem, ut BE quadratum ad BC quadratum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 28:11)
Designet ABKI corpus Sphaericum centro C semidiametro CA descriptum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 37:1)
ut ejus motus amissus, quo tempore progrediendo longitudinem semidiametri suae describit, est ad ejus motum totum sub initio, ita motus quem solidum quodvis datum, in Fluido eodem jam facto subtilissimo, describendo diametri suae longitudinem amitteret, est ad ejus motum totum sub initio quamproxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 71:3)
pergent eadem similiter moveri, adeoque quo tempore describunt spatia semidiametris suis aequalia, amittent partes motuum proportionales totis;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 71:8)
hoc est ut spatium Cylindricum per quod solidum movetur, adeoque in duplicata ratione semidiametri solidi quamproxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 75:4)
Et propterea quo tempore Globus, ea cum velocitate uniformiter continuata, longitudinem semidiametri suae seu digitorum 3-7/16 describere posset, eodem amitteret motus sui partem 1/3262.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 82:5)
Quare cum Globus aqueus in aere movendo resistentiam patiatur qua motus sui pars 1/3261, interea dum longitudinem semidiametri suae describat (ut jam ante ostensum est) tollatur, sitque densitas aeris ad densitatem aquae ut 800 vel 850 ad 1 circiter, consequens est ut haec Regula generaliter obtineat.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 103:1)
Si corpus quodlibet Sphaericum in Medio quocunque satis Fluido moveatur, & spectetur resistentiae pars illa sola quae est in duplicata ratione velocitatis, haec pars erit ad vim quae totum corporis motum, interea dum corpus idem longitudinem duarum ipsius semidiametrorum motu illo uniformiter continuato describat, vel tollere posset vel eundem generare, ut densitas Medii ad densitatem corporis quamproxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 103:2)
Si fluidum in vase cylindrico longitudinis infinitae contineantur, & cylindrum alium interiorem contineat, revolvatur autem cylindrus uterque circa axem communem, sintque revolutionum tempora ut ipsorum semidiametri, & perseveret fluidi pars unaquaeque in motu suo:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 8:2)
eorum tempora periodica ut quadrata semidiametrorum:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 25:3)
Tempora verò periodica esse in sesquialtera semidiametrorum orbium consentiunt Astronomici:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 가설 11:3)
Lunae distantia mediocris à centro Terrae est semidiametrorum terrestrium, secundum plerosque Astronomorum 59, secundum Vendelinum 60, secundum Copernicum 60-1/3, secundum Kircherum 62½, & secundum Tychonem 56½.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 12:1)
Corrigatur iste error, & distantia evadet quasi 61 semidiametrorum terrestrium, fere ut ab aliis assignatum est.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 12:3)

SEARCH

MENU NAVIGATION