라틴어 문장 검색

puncta C, p, P, B, A, transeuntem, ubi punctum M perpetuo tangit lineam rectam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 36:7)
Quoniam Rota eundo semper revolvitur circa punctum contactus B, manifestum est quod recta BP perpendicularis est ad lineam illam curvam AP, quam Rotae punctum P describit, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 16:1)
fiat experimentum in sclopetis, utrum sclopetus, pro tanto spatio quo emittat pilam in linea directa, sive (ut vulgo loquuntur) in puncto blanco, debiliorem edat percussionem ejaculando in supra, ubi Motus Ictus est simplex, quam desuper, ubi Motus Gravitatis concurrit cum Ictu.
(FRANCIS BACON, NOVUM ORGANUM, Liber Secundus 472:14)
& quo tempore Luna attingit punctum n, summa illa erit area tota EQAn quam linea PD describit;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 21~30 55:7)
Et vice versa, si rectae BD, CD concursu suo D describant Sectionem Conicam per puncta B, C, A transeuntem, & harum concursus tunc incidit in ejus punctum aliquod A, cum alterae duae BM, CM coincidunt cum linea BC, punctum M continget rectam positione datam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 34:4)
huius antemeridiana circiter hora quinta sumenda est extrema gnomonis umbra et puncto signanda, deinde circino diducto ad punctum, quod est gnomonis umbrae longitudinis signum, ex eoque a centro circumagenda linea rotundationis.
(비트루비우스 폴리오, 건축술에 관하여, LIBER PRIMUS, 6장30)
A puncto A propagetur pressio quaquaversum, idque si fieri potest secundum lineas rectas, & obstaculo NBCK perforato in BC, intercipiatur ea omnis, praeter partem Coniformem APQ, quae per foramen circulare BC transit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 5:4)
Si corpus in superficiem quamvis CD, secundum lineam rectam AD lege quavis ductam incidens, emergat secundum aliam quamvis rectam DK, & a puncto C duci intelligantur lineae curvae CP, CQ ipsis AD, DK semper perpendiculares:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 23:2)
Corpus omne quod, cum movetur in linea aliqua curva, & radio ducto ad punctum vel immobile, vel motu rectilineo uniformiter progrediens, describit areas circa punctum illud temporibus proportionales, urgetur a vi centripeta tendente ad idem punctum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 8:1)
Si corpus P revolvendo circa centrum S, describat lineam quamvis curvam APQ, tangat vero recta ZPR curvam illam in puncto quovis P, & ad tangentem ab alio quovis curvae Q agatur QR distantiae SP parallela, ac demittatur QT perpendicularis ad distantiam SP:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. II. De Inventione Virium Centripetarum. 43:1)
Propagetur motus a puncto A per foramen BC, pergatque (si fieri potest) in spatio conico BCQP, secundum lineas rectas divergentes a puncto C. Et ponamus primo quod motus iste sit undarum in superficie stagnantis aquae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 9:2)
deinde traicitur oblique ad insequentis longitudinis et circumitionis decusis, item ex ordine progrediens singula puncta praetereundo et circum involvendo conlocatur in singulis decusationibus, et ita pervenit et figitur ad eam lineam recedens a primo in octavum punctum, in qua prima pars est eius fixa.
(비트루비우스 폴리오, 건축술에 관하여, LIBER DECIMUS, 6장10)
Posito enim triangulo atque descripto si per tres angulos singulae lineae recte stantes ponantur, haeque tres inclinentur, ut ad unum medium punctum vertices iungant, fit pyramis, quae, cum a triangula basi profecta sit, tribus triangulis per latera concluditur hoc modo:
(보이티우스, De Arithmetica, Liber secundus, De pyramide, quod ea sit solidarum figurarum principium sicut triangulus planarum 2:4)
linea emergentiae coincidet cum plano Dd. Perveniat corpus ad hoc planum in puncto R;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 13:7)
Nam si puncta duo progrediantur uniformi cum motu in lineis rectis & distantia eorum dividatur in ratione data, punctum dividens vel quiescet vel progredietur uniformiter in linea recta, Hoc postea in Lemmate xxiii demonstratur in plano, & eadem ratione demonstrari potest in loco solido.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 27:1)

SEARCH

MENU NAVIGATION