라틴어 문장 검색

determinat angulum contactus FCG, seu curvaturam quam curva linea habet in C. Si lineola illa FG finitae est magnitudinis, designabitur per terminum tertium una cum subsequentibus in infinitum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 70:10)
At si lineola illa minuatur in infinitum, termini subsequentes evadent infinite minores tertio, ideoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 70:11)
Etenim ob datum spatii incrementum EDde, lineola Dd, quae decrementum est ipsius GD, erit reciproce ut ED, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 11:1)
dico quod corpus gyrari potest in Spirali, quae radios omnes a centro illo ductos intersecat in angulo dato.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 7:2)
& (per Lem. X. Lib. I.) lineola TQ, quae vi illa generatur, est in ratione composita ex ratione hujus vis & ratione duplicata temporis quo arcus PQ describitur, (Nam resistentiam in hoc casu, ut infinite minorem quam vis centripeta negligo) erit TQ × SPq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 8:4)
Ex resistentia oritur arearum differentia RSr, & propterea resistentia est ut lineolae Qr decrementum Rr collatum cum quadrato temporis quo generatur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 8:13)
Nam lineola Rr (per Lem. X. Lib. I.) est in duplicata ratione temporis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 8:14)
In Medio igitur cujus densitas est reciproce ut distantia a centro SP, corpus gyrari potest in hac Spirali. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 8:25)
Velocitas in loco quovis P ea semper est quacum corpus in Medio non resistente gyrari potest in circulo, ad eandem a centro distantiam SP.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 9:2)
Corpus itaque gyrari nequit in hac spirali, nisi ubi vis resistentiae minor est quam dimidium vis centripetae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 12:2)
Atque hoc pacto haud difficulter imaginari possimus quibus modis ac temporibus corpora in Medio quocunque regulari gyrari debebunt.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 17:9)
dico quod corpus gyrari potest in Spirali, quae radios omnes a centro illo ductos intersecat in angulo dato.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 20:2)
& EF, FG lineolas Physicas seu Medii partes lineares punctis illis interjectas, & successive translatas in loca [epsilon][phi], [phi][gamma] & ef, fg.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 43:7)
Et eodem argumento differentia virium Elasticarum punctorum Physicorum [epsilon] & [gamma], in reditu lineolae Physicae [epsilon][gamma] est ut [Omega][phi].
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 46:3)
Sed differentia illa (id est excessus vis Elasticae puncti [epsilon] supra vim elasticam puncti [gamma],) est vis qua interjecta Medii lineola Physica [epsilon][gamma] acceleratur;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 46:4)

SEARCH

MENU NAVIGATION