라틴어 문장 검색

Vel si illum numerum, quo maior minorem superat, dividas eumque minori superponas quodque inde concrescit medium ponas, arithmetica medietas informatur.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 5:4)
Quem si medium constituas, arithmeticae medietatis ordo formatur.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 5:7)
Haec autem huiusmodi invenietur, si duobus terminis constitutis, qui ipsi tribus creverint intervallis, longitudine latitudine et profunditate, duo huismodi termini medii fuerint constituti et ipsi tribus intervallis notati, qui vel ab aequalibus per aequales aequaliter sint producti vel ab inaequalibus ad inaequalia inaequaliter, vel ab inaequalibus ad aequalia aequaliter, vel quolibet alio modo, atque ita, cum armonicam proportionem custodiant alio tamen modo comparati faciant arithmeticam medietatem hisque geometrica medietas, quae inter utrasque versatur, deesse non possit.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:3)
Rursus si maximus iiij terminorum numerus ad eum, qui sibi propinquus erit, talem habeat differentiam, qualem idem ipse maximo propinquus ad parvissimum, huiusmodi proportio in arithmetica consideratione proponitur, et extremorum coniunctio duplex erit propria medietate.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:5)
Arithmetica autem est, si duodenarius ad novenarium et novenarius ad senarium comparetur.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:12)
In his ergo geometricam arithmeticamque medietatem perspeximus.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:15)
Et hoc idem dico de tertia et quarta parte scientiarum mathematicarum quae sunt arithmetica et musica, et per eundem modum ut declaratum est de geometria.
(Boethius De Dacia, DE MUNDI AETERNITATE, 8 57:1)
accubans apud Vestorium, hominem remotum a dialecticis, in arithmeticis satis exercitatum.
(마르쿠스 툴리우스 키케로, 아티쿠스에게 보낸 편지들, LIBER QVARTVS DECIMVS AD ATTICVM, letter 12 6:5)
simul complexus sum, ne singula methodo prolixiore quam pro rei dignitate proponere, & sigillatim demonstrare tenerer, & seriem reliquarum Propositionum interrumpere.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 서문 2:5)
Simili methodo corrigendus erit locus k, ad quem corpus B ascendit, & inveniendus locus l, ad quem corpus illud ascendere debuisset in vacuo.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 37:18)
Et simili methodo ubi corpora duo simul demittuntur de locis diversis, inveniendi sunt motus utriusq;
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 37:22)
Contractiores enim redduntur demonstrationes per methodum indivisibilium.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 58:4)
& propterea Methodus illa minus Geometrica censetur, malui demonstrationes rerum sequentium ad ultimas quantitatum evanescentium summas & rationes, primasq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 58:6)
His enim idem praestatur quod per methodum indivisibilium, & principiis demonstratis jam tutius utemur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 58:8)
talium demonstrationum ad methodum praecedentium Lemmatum semper revocari.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 58:10)

SEARCH

MENU NAVIGATION