라틴어 문장 검색

j ij iij iiij v vj vij viij viiij x. In hac enim naturalis numeri dispositione, si quis continuatim differentias terminorum curet aspicere, secundum arithmeticam medietatem aequa terminorum inter se discrepantia est;
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 1:3)
Quod si conversim ponantur, ut non eisdem differentiis eadem qualitas proportionis eveniat, geometrica talis proportionalitas, non arithmetica nominatur.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 3:4)
Harum vero medietatum, id est arithmeticae atque armonicae, geometrica proportionalitas media esse notata est, quae vel in maioribus vel in minoribus terminis aequas numerorum qualitates in proportionalitate custodit.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 6:6)
Et de arithmetica quidem medietate satis dictum est.
(보이티우스, De Arithmetica, Liber secundus, De arithmetica medietate eiusque proprietatibus 6:8)
Hic enim aequa semper proportio custoditur, numeri quantitas multitudoque neglegitur, contrarie quam in arithmetica medietate, ut sunt j ij iiij viij xvj xxxij lxiiij vel in tripla proportione j iij viiij xxvij lxxxj vel si quadrupla vel si quincupla vel si in quamlibet multiplicitatem numerorum sit constituta distensio.
(보이티우스, De Arithmetica, Liber secundus, De geometrica medietate eiusque proprietatibus 1:2)
Atque ideo arithmetica quidem rei publicae comparatur, quae paucis regitur, idcirco quod in minoribus eius terminis maior proportio sit. Musicam vero medietatem optimatium dicunt esse rempublicam ideo, quod in maioribus terminis maior proportionalitas invenitur.
(보이티우스, De Arithmetica, Liber secundus, Quae medietates quibus rerum publicarum statibus comparentur 1:1)
Habet autem proprietatem, quemadmodum dictum est, contrariam arithmeticae medietati.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:1)
Namque in arithmetica proportione medius terminus eadem sua parte et minorem praecedit et a maiore praeceditur, sed alia parte minoris, alia vero parte maioris.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:9)
Sit enim arithmetica dispositio ij iij iiij.
(보이티우스, De Arithmetica, Liber secundus, De armonica medietate eiusque proprietatibus 6:10)
Cuius haec ratio est, quoniam arithmetica dispositio aequas tantum per differentias dividit quantitates, geometrica vero terminos aequa proportione coniungit, at vero armonica ad aliquid quodammodo relata consideratione neque solum in terminis speculationem proportionis habet neque solum in differentiis, sed in utrisque communiter.
(보이티우스, De Arithmetica, Liber secundus, Quare dicta sit armonica medietas ea, quae digesta est 1:2)
Poterimus autem hanc in duobus altrinsecus positis terminis vel paribus vel inparibus permutare ita, ut, cum arithmeticam ponimus medietatem, differentiarum tantum ratio aequalitasque servetur, cum vero geometricam, rata se proportionum iunctura custodiat, sin autem armonica fiat, differentiarum comparatio ab terminorum proportione non discrepet.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 1:3)
Et sint quidem primo pares positae quaedam extremitates, inter quas has omnes medietates oporteat internectere, x et xl. Prius igitur arithmetica medietas aptetur.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 1:4)
Inter hos ergo si xxv posuero, erit mihi arithmetica proportio differentiarum quantitate inmutabiliter custodita, in huiusmodi scilicet dispositione:
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 1:5)
omnesque proprietates, quas supra diximus in medietate arithmetica convenire, ab hac huiusmodi dispositione non repperies alienas.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 1:7)
Quae omnes scilicet proprietates non alterius nisi arithmeticae medietatis sunt, quod, si superius dicta meminerit lector, ita esse indubitanter intelleget.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 1:14)

SEARCH

MENU NAVIGATION