라틴어 문장 검색

* 325, 2728 Secunda superiori parti inferiori ..... pars summa, Targa et ego.
(켈수스, De Medicina introduction, Adnotatio Critica).1803)
secunda, sudorem prohibere.
(켈수스, 의학에 관하여, 3권, XIX De cardiacis. 2:2)
neque enim sperare secunda Fas mihi, nec liceat.
(마르쿠스 안나이우스 루카누스, 파르살리아, 9권 3:24)
38 seq.
(마르쿠스 툴리우스 키케로, De Divinatione (ed. C. F. W. Müller), Argumentum.25)
post unam oscillationem ad punctum V. Est RV retardatio ex resistentia aeris.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 37:10)
Tollatur corpus B & inveniatur locus v, a quo si corpus A demittatur & post unam oscillationem redeat ad locum r, sit st pars quarta ipsius rv sita in medio, & per chordam arcus tA exponatur velocitas quam corpus A proxime post reflexionem habuit in loco A. Nam t erit locus ille verus & correctus ad quem corpus A, sublata aeris resistentia, ascendere debuisset.
(아이작 뉴턴, 자연철학의 수학적 원리, 색인, 움직임의 공리와 법칙 37:17)
Nam si diametri conjugatae AB, DM tangenti FG occurrant in E & H, seq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 85:1)
Hinc si tangentes duae FG, PQ tangentibus parallelis AF, BG occurrant in F & G, P & Q, seq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 86:2)
dico quod oscillationum utcunq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 28:4)
perpendiculi latus jacentes sint similes & aequales, pendula duo oscillationes suas tam totas quam dimidias iisdem temporibus semper peragent. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 29:18)
, tempus quo corpus describit arcum ST est ad tempus oscillationis unius, ut arcus HI (tempus quo corpus H perveniet ad L) ad semicirculum HKM (tempus quo corpus H perveniet ad M.) Et velocitas corporis penduli in loco T est ad velocitatem ipsius in loco infimo R, (hoc est velocitas corporis H in loco L ad velocitatem ejus in loco G, seu incrementum momentaneum lineae HL ad incrementum momentaneum lineae HG, arcubus HI, HK aequabili fluxu crescentibus) ut ordinatim applicata LI ad radium GK, sive ut [sqrt]{SRq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 33:12)
Cum igitur Oscillationum tempora in Globo dato sint in dimidiata ratione longitudinis AR, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 36:4)
manifestum est quod Oscillationum tempora in alio quovis globo dato, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 36:7)
Ergo Oscillationes in globis & Cycloidibus omnibus, quibuscunq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 37:4)
Nam si Rotae, qua Cyclois intra globum describitur, diameter constituatur aequalis semidiametro globi, Cyclois evadet linea recta per centrum globi transiens, & Oscillatio jam erit descensus & subsequens ascensus in hac recta.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 38:3)

SEARCH

MENU NAVIGATION