라틴어 문장 검색

sive ut 2PC ad Gv, sed punctis Q & P coeuntibus aequantur 2PC & Gv. Ergo & his proportionalia L × QR & QTq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 9:37)
Perpendiculum quod ab umbilico Parabolae ad tangentem ejus demittitur, medium est proportionale inter distantias umbilici a puncto contactus & a vertice principali figurae.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 15:1)
cum velocitate exeat de loco P, & vi centripeta quae sit reciproce proportionalis quadrato distantiae a centro, simul agitetur;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 24:2)
proportionale rectangulum sub axibus, est in ratione composita ex dimidiata ratione lateris recti & integra ratione temporis periodici.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 29:3)
axis minor est medius proportionalis inter axem majorem (quem transversum appello) & latus rectum, atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 32:2)
) ut tangens PR, id est (ob proportionales PR ad QT & SP ad SY) ut SP × QT ÷ SY, sive ut SY reciproce & SP × QT directe; estq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 36:2)
Nam perpendicula jam sunt semi-axes minores, & hi sunt ut mediae proportionales inter distantias & latera recta.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 40:5)
fiet ex aequo velocitas gyrantis in Conica sectione ad velocitatem gyrantis in circulo in eadem distantia, ut media proportionalis inter distantiam illam communem & semissem lateris recti sectionis, ad perpendiculum ab umbilico communi in tangentem sectionis demissum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 45:5)
Posito quod vis centripeta sit reciproce proportionalis quadrato distantiae a centro, & quod vis illius quantitas absoluta sit cognita;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. III. De motu Corporum in Conicis Sectionibus excentricis. 47:1)
de rectis PT, PR, acta recta tr ipsi TR parallela, abscinde quasvis Pt, Pr ipsis PT, PR proportionales, & si per earum terminos t, r & polos B, C actae Bt, Cr concurrant in d, locabitur punctum illud d in Trajectoria quaesita.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 40:4)
agendo quamvis tr ipsi TR parallelam, de PQ, PS abscinde Pr, Pt ipsis PR, PT proportionales respective;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 50:4)
productus DC circa polum C. Notentur puncta M, N in quibus anguli crus BC secat radium illum ubi crus alterum BH concurrit cum eodem radio in punctis D & P. Deinde ad actam infinitam MN concurrant perpetuo radius ille CP vel CD & anguli crus CB, & cruris alterius BH concursus cum radio delineabit Trajectoriam quaesitam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 53:2)
Delineabit igitur cruris BH concursus cum radio sectionem Conicam per puncta C, D, P transeuntem, & rectam BH tangentem in puncto B. Q. E. F.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 56:3)
Nam si A & P sint Puncta contactuum ubivis in tangentibus sita, & per punctorum H, I, K, L quodvis I agatur recta IY tangenti KL parallela & occurrens curvae in X & Y, & in ea sumatur IZ media proportionalis inter IX & IY:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 61:4)
Nam rectae quaevis convergentes transmutantur in parallelas, adhibendo pro radio ordinato primo AO lineam quamvis rectam, quae per concursum convergentium transit;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 68:4)

SEARCH

MENU NAVIGATION