라틴어 문장 검색

) in ratione composita ex ratione simplici radii SP directe & ratione duplicata temporis periodici inverse:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 58:4)
adeo vel diminuto hoc Radio, tempus periodicum augeri magis, vel diminui minus quam in Radii hujus ratione sesquiplicata, per Corol. 6. Prop. IV.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 58:9)
Ergo si actio corporis longinqui Q, qua vis illa diminuitur, augeatur ac diminuatur per vices, augebitur simul ac diminuetur Radius SP per vices, & tempus periodicum augebitur ac diminuetur in ratione composita ex ratione sesquiplicata Radii & ratione dimidiata qua vis illa centripeta corporis centralis S per incrementum vel decrementum actionis corporis longinqui Q diminuitur vel augetur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 58:12)
Et inde si magnitudo corporis Q proportionalis sit ipsius vi absolutae, erunt vires illae NM, ML & earum effectus directe ut cubus diametri apparentis longinqui corporis Q e corpore S spectati, & vice versa. Namq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 66:8)
Cum autem linea LM nunc major si nunc minor quam radius PS, Exponatur vis mediocris LM per radium illum PS, & erit haec ad vim mediocrem QK vel QN (quam exponere licet per QS) ut longitudo PS ad longitudinem QS.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XI. De Motu Corporum Sphaericorum viribus centripetis se mutuo petentium. 69:2)
erit superficiei pars annularis, convolutione arcus rE genita, ut lineola Dd, manente Sphaerae radio PE, (uti demonstravit Archimedes in Lib.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 67:2)
hoc est, ut lineola Dd, vel quod perinde est, ut rectangulum sub dato Sphaerae radio PE & lineola illa Dd:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 67:6)
Si particularum vis centripeta sit reciproce ut cubus distantiae corpusculi a se attracti, & fiat DN ut DEq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 73:2)
annulus autem iste est ut rectangulum sub radio AE & latitudine Ee, & hoc rectangulum (ob proportionales PE & AE, Ee & cE) aequatur rectangulo PE × cE seu PE × Ff;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 26:3)
vi, quae sit ut cubus ordinatim applicatae, corpus movebitur in Hyperbola.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 56:11)
Proinde velocitas ante incidentiam est ad velocitatem post emergentiam, ut GH ad IK vel TH, id est, ut AH vel Id ad vH, hoc est (respectu radii TH vel IK) ut sinus emergentiae ad sinum incidentiae. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 9:7)
Et sit ea lineae incidentiae GH obliquitas ad planum primum Aa, ut sinus incidentiae sit ad radium circuli, cujus est sinus, in ea ratione quam habet idem sinus incidentiae ad sinum emergentiae ex plano Dd, in spatium DdeE:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 13:5)
uti in radiis ckzkc, biyib, ahxha incidentibus ad r, q, p, & inter k & z, i & y, h & x incurvatis, delineatum est.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 16:12)
erit ut ejus velocitas & Massa conjunctim, id est ut velocitas & cubus diametri;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 17:5)
cum velocitatibus moti, amittent partes motuum proportionales totis, erunt ut cubi diametrorum ad dignitatem illam applicata.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 19:4)

SEARCH

MENU NAVIGATION