라틴어 문장 검색

Et quamvis motus excentrici in Spiralibus ad formam Ovalium accedentibus peragantur;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 18:2)
dico quod corpus gyrari potest in Spirali, quae radios omnes a centro illo ductos intersecat in angulo dato.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 20:2)
Invenire & vim centripetam & Medii resistentiam qua corpus in data Spirali data lege revolvi potest.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 25:1)
Sit spiralis illa PQR.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 26:1)
Data lege vis centripetae, invenire Medii densitatem in locis singulis, qua corpus datam Spiralem describet.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 28:1)
Vorticis vim illam, qua priùs in Orbita sua tanquam in aequilibrio constitutum retinebatur, jam superans, recedet à centro & revolvendo describet Spiralem, non amplius in eundem Orbem rediens.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IX. De motu Circulari Fluidorum. 35:11)
Vires, quibus Planetae circumjoviales perpetuo retrahuntur à motibus rectilineis & in orbibus suis retinentur, respicere centrum Jovis, & esse reciproce ut quadrata distantiarum locorum ab eodem centro.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 2:1)
Vires, quibus Planetae primarii perpetuo retrahuntur à motibus rectilineis, & in Orbibus suis retinentur, respicere Solem, & esse reciproce ut quadrata distantiarum ab ipsius centro.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 5:1)
Lunam gravitare in terram, & vi gravitatis retrahi semper à motu rectilineo, & in orbe suo retineri.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 11:1)
Planetas circumjoviales gravitare in Jovem, & circumsolares in Solem, & vi gravitatis suae retrahi semper à motibus rectilineis, & in orbibus curvilineis retineri.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 15:1)
Et propterea hae figurae ultimae (quoad perimetros acE,) non sunt rectilineae, sed rectilinearum limites curvilinei.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 14:2)
Et quoniam in aequalibus a centro distantiis velocitas eadem est in Spirali PQR atque in recta SP, & longitudo Spiralis ad longitudinem rectae PS est in data ratione, nempe in ratione OP ad OS;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 13:2)
tamen concipiendo Spiralium illarum singulas revolutiones eisdem ab invicem intervallis distare, iisdemque gradibus ad centrum accedere cum Spirali superius descripta, intelligemus etiam quomodo motus corporum in hujusmodi Spiralibus peragantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 18:3)
Data igitur Spirali datur proportio resistentiae ad vim centripetam, & viceversa ex data illa proportione datur Spiralis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 11:5)
ratione esse Tangentem anguli quo Spiralis praefinita, in Medio de quo egimus, secat radium AS, ad tangentem anguli quo Spiralis nova secat radium eundem in Medio proposito: Atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 17:6)

SEARCH

MENU NAVIGATION