라틴어 문장 검색

erit attractio corpusculi P in hunc Cylindrum ut BA - PE + PD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 34:3)
E corpore dato formanda est Sphaera vel Cylindrus aliave figura regularis, cujus lex attractionis, cuivis decrementi rationi congruens (per Prop. LXXX.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 43:1)
numerus revolutionum quas corpus intra circulorum circumferentias complere potest, est ut PS ÷ OS, sive ut Tangens anguli quem Spiralis continet cum radio PS;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 14:3)
tempus vero revolutionum earundem ut OP ÷ OS, id est reciproce ut Medii densitas.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 14:4)
Si corpus, in Medio cujus densitas est reciproce ut distantia locorum a centro, revolutionem in Curva quacunque AEB circa centrum illud fecerit, & Radium primum AS in eodem angulo secuerit in B quo prius in A, idque cum velocitate quae fuerit ad velocitatem suam primam in A reciproce in dimidiata ratione distantiarum a centro (id est ut BS ad mediam proportionalem inter AS & CS:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 16:2)
) corpus illud perget innumeras consimiles revolutiones BFC, CGD, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 16:3)
Revolutionum vero tempora erunt ut Perimetri orbitarum AEB, BFC, CGD &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 16:6)
tempus totum, quo corpus perveniet ad centrum, erit ad tempus revolutionis primae, ut summa omnium continue proportionalium AS^½, BS^½, CS^½ pergentium in infinitum, ad terminum primum AS^½;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 16:9)
etiam ut sunt eorundem angulorum secantes ita esse tempora revolutionum omnium inter circulos eosdem duos quam proxime.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 17:7)
tamen concipiendo Spiralium illarum singulas revolutiones eisdem ab invicem intervallis distare, iisdemque gradibus ad centrum accedere cum Spirali superius descripta, intelligemus etiam quomodo motus corporum in hujusmodi Spiralibus peragantur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. IV. De Corporum circulari Motu in Mediis resistentibus. 18:3)
sustinet fundum pondus Cylindri, cujus basis aequalis est superficiei fundi, & altitudo eadem quae Fluidi incumbentis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 15:2)
hoc est gravitati solidi cujus ultima ratio ad Cylindrum praefinitum, (si modo Orbium augeatur numerus & minuatur crassitudo in infinitum, sic ut actio gravitatis a superficie infima ad supremam continua reddatur) fiet ratio aequalitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 17:11)
Sustinet ergo superficies infima pondus cylindri praefiniti. Q. E. D. Et simili argumentatione patet Propositio, ubi gravitas decrescit in ratione quavis assignata distantiae a centro, ut & ubi Fluidum sursum rarius est, deorsum densius. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 17:12)
erit resistentia Globi duplo minor quam resistentia Cylindri.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 26:2)
In ea capiatur LB semidiametro CB aequalis, & ducatur BD quae Sphaeram tangat in B. In AC & BD demittantur perpendiculares BE, DL, & vis qua particula Medii, secundum rectam FB oblique incidendo, Globum ferit in B, erit ad vim qua particula eadem Cylindrum ONGQ axe ACI circa Globum descriptum perpendiculariter feriret in b, ut LD ad LB vel BE ad BC.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 28:9)

SEARCH

MENU NAVIGATION