라틴어 문장 검색

Dico jam quod fluidi hujus partes omnes sphaericae aequaliter premuntur undique:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 7:2)
sit enim EF pars sphaerica fluidi, & si haec undiq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 7:3)
Dico praeterea quod diversarum partium sphaericarum aequalis sit pressio.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 8:2)
Nam partes sphaericae contiguae se mutuo premunt aequaliter in puncto contactus, per motus Legem III.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 8:3)
Superficiebus sphaericis innumeris BFK, CGL distinguatur fluidum in Orbes concentricos aequaliter crassos;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 17:2)
Designet ATV fundum Sphaericum cui fluidum incumbit, S centrum, SA, SB, SC, SD, SE, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 30:1)
Unde obiter cum angulus CSB semper sit acutus, consequens est, quod si solidum ADBE convolutione figurae Ellipticae vel Ovalis ADBE circa axem AB facta generetur, & tangatur figura generans a rectis tribus FG, GH, HI in punctis F, B & I, ea lege ut GH sit perpendicularis ad axem in puncto contactus B, & FG, HI cum eadem GH contineant angulos FGB, BHI graduum 135:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 32:1)
Invenire resistentiam corporis Sphaerici in Fluido raro & Elastico velocissime progredientis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 36:1)
Designet ABKI corpus Sphaericum centro C semidiametro CA descriptum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 37:1)
Producatur CA primo ad S deinde ad R, ut sit AS pars tertia ipsius CA, & CR sit ad CS ut densitas corporis Sphaerici ad densitatem Medii.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 37:2)
manifestum est quod in Fluido, cujus particulae vi omni Elastica aliaque omni vi reflexiva destituuntur, corpus Sphaericum resistentiam duplo minorem patietur;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 40:3)
Corporum Sphaericorum in Mediis quibusque Fluidissimis resistentiam in anteriore superficie definire.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 54:1)
Si solidum Sphaericum in ejusdem secum densitatis Fluido subtilissimo libere moveatur, & inter movendum eadem vi urgeatur a tergo atque cum quiescit;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 61:2)
Si vas Sphaericum Fluido homogeneo quiescente plenum a vi impressa moveatur in directum, motuque progessivo semper accelerato ita pergat ut interea non moveatur in orbem:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 65:1)
Nam per Lemma superius si vas Sphaericum, rigidum, Fluidoque homogeneo quiescente plenum, motu paulatim impresso progrediatur;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 68:1)

SEARCH

MENU NAVIGATION