라틴어 문장 검색

Hoc autem non solis a tetragono pyramidis sed in omnibus ab omni multiangulo progredientibus speculari licet.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:15)
Dispositis enim in ordinem tetragonis i iiij viiij xvj xxv, quoniam hi solam longitudinem latitudinemque sortiti sunt et altitudine carent, si per latera solam unam multiplicationem recipiant, aequalem provehunt profunditatem.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:2)
Nam quattuor tetragonus duos habet in latere et natus est ex bis duobus.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:3)
VIIII vero tetragonus, quoniam tres habet in latere et factus est ex tribus in se multiplicatis, si ei unam lateris multiplicationem adiunxeris, rursus alius cybus aequabili laterum formatione concrescit.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:8)
Et sequentes quidem tetragoni secundum eundem modum multiplicatione facta provehuntur.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:11)
Et quoniam viiij tetragonus tribus per latus unitatibus signabatur, solo ternario xxvij cybi latus urgetur.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:13)
Et quoniam xvj tetragonus iiij unitatum latus habebat, totidem lxiiij cybus in latere gestabit unitates.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:14)
Omnis enim tetragonus una quidem superficies est quattuor angulorum, totidemque laterum.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:16)
Tetragoni:
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 3:1)
At vero positis in ordinem ab unitate inparibus et sub his a dualitate paribus descriptis coacervatio inparium tetragonos facit, coacervatio parium superiores efficit parte altera longiores.
(보이티우스, De Arithmetica, Liber secundus, Quod ex inparibus quadrati, ex paribus parte altera longiores fiant 1:1)
Quare quoniam tetragonorum haec natura est, ut ab inparibus procreentur, qui sunt unitatis participes, id est eiusdem inmutabilisque substantiae, cunctisque partibus suis aequales sint, quod et anguli angulis et latera lateribus et longitudini compar est latitudo, dicendum est, huiusmodi numeros eiusdem naturae atque inmutabilis substantiae participes, illos vero numeros, quos parte altera longiores paritas creat, alterius dicemus esse substantiae.
(보이티우스, De Arithmetica, Liber secundus, Quod ex inparibus quadrati, ex paribus parte altera longiores fiant 1:2)
Nascuntur autem ex superiore descriptione et ex primo ordine omnes tetragoni hoc modo.
(보이티우스, De Arithmetica, Liber secundus, Quod ex inparibus quadrati, ex paribus parte altera longiores fiant 4:6)
Tetragoni id est quadrati
(보이티우스, De Arithmetica, Liber secundus, Quod ex inparibus quadrati, ex paribus parte altera longiores fiant 7:1)
Illi vero, qui sunt pares, quoniam binarii numeri formae sunt, quique ex his coacervati collectique in unam congeriem parte altera longiores numeri nascuntur, hi secundum ipsius binarii numeri naturam ab eiusdem substantiae natura discessisse dicuntur, putanturque alterius naturae esse participes idcirco, quoniam, cum latera tetragonorum ab aequalitate progressa in aequalitatempropriae latitudinis ambitum tendant, hi adiecto uno ab aequalitate laterum discesserunt atque ideo dissimilibus lateribus et quodammodo a se alteris coniunguntur.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:5)
Unde nunc nobis monstrandum est, hac gemina numerorum natura, quadratorum scilicet et parte altera longiorum cunctas numeri species cunctasque habitudines vel ad aliquid relatae quantitatis, ut multiplicium vel superparticularium et ceterorum, vel ad se ipsam consideratae, ut formarum, quas dudum in superiore disputatione descripsimus, informari, ut, quemadmodum mundus ex inmutabili mutabilique substantia, sic omnis numerus ex tetragonis, qui inmutabilitate perficiuntur, et ex parte altera longioribus, qui mutabilitate participiant, probetur esse coniunctus.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:8)

SEARCH

MENU NAVIGATION