라틴어 문장 검색

Nam quoniam lineares numeros esse diximus, qui ab uno profecti in infinitum currerent, ut sunt j ij iij iiij v vj vij viij viiij x, his autem ordinatim compositis et ad se invicem cum distantia iunctis superficies nascebantur, ut, si unum et duo iungeres, primus triangulus nasceretur, id est tres, et cum his adiungeremus tertium, id est ternarium, senarius triangulus rursus occurreret, et post hos tetragoni uno intermisso, pentagoni vero duobus, exagoni tribus, eptagoni relictis quattuor nascebantur:
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 1:3)
Descriptis enim cunctis tetragonis, id est j iiij viiij xvj xxv xxxvj xlviiij lxiiij lxxxj c, si unitatem primam ex hac dispositione praesumam, erit mihi potestate et vi pyramis ipsa unitas, nondum etiam opere atque actu.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 4:6)
At si huic tetragonum superponam, id est quattuor, nascetur pyramis quinque numerorum, quae duobus tantum numeris per latera positis continetur.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 4:7)
Atque huic si sequentem tetragonum xvj superponam, tricenaria mihi pyramidis forma producitur.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 4:9)
Tetragoni j iiij viiij xvj xxv xxxvj xlviiij lxiiij lxxxj c
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 5:1)
Pyramides a tetragonis j v xiiij xxx lv xcj cxl cciiij cclxxxv ccclxxxv
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 6:1)
Omnis enim multorum angulorum forma ex sui generis figura unitati superposita ab uno ingredientibus ad pyramidum constituendas figuras usque in infinita progreditur et ex hoc equidem apparere necesse est, triangulas formas ceterarum figurarum esse principium, quod omnis pyramis a quacunque basi profecta vel a quadrato, vel a pentagono, vel ab exagono, vel ab eptagono vel a quocunque similium solis triangulis usque ad verticem continetur.
(보이티우스, De Arithmetica, Liber secundus, Solidorum generatio numerorum 7:2)
Haec autem est, ut si quis xvj tetragono adiciat viiij atque huic iiij et ab ulterioris sese unitatis adiectione suspendat.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:4)
ut si a xvj tetragono proficiscens usque in novem terminum ponat neque excrescat ad quattuor.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:9)
Et quotcunque tetragoni defuerint, totiens eam curtam esse dicemus;
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:10)
si vero duobus tetragonis deficitur, id est unitate et eo, qui sequitur, vocatur bis curta, quod Graeci δικολουρον appellant.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:12)
Quod si tribus tetragonis, ter curta dicetur, quam Graeci τρικολουρον nominant.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:13)
Et quotcunque tetragoni fuerint minus, totiens illam pyramidem curtam esse proponimus.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:14)
Hoc autem non solis a tetragono pyramidis sed in omnibus ab omni multiangulo progredientibus speculari licet.
(보이티우스, De Arithmetica, Liber secundus, De curtis pyramidis 1:15)
Dispositis enim in ordinem tetragonis i iiij viiij xvj xxv, quoniam hi solam longitudinem latitudinemque sortiti sunt et altitudine carent, si per latera solam unam multiplicationem recipiant, aequalem provehunt profunditatem.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 1:2)

SEARCH

MENU NAVIGATION