라틴어 문장 검색

Conficiebatur dolium ex metallo concavum, quod demittebatur aequabiliter ad superficiem aquae, atque sic deportabat totum aerem qui continebatur in dolio secum in fundum maris.
(FRANCIS BACON, NOVUM ORGANUM, Liber Secundus 479:21)
Res est profecto prudentibus ridicula et satyra digna affectores istos videre, in quot formas se vertant et quali utantur arte quasi prospectiva, qua superficies appareat corpus quod profunditatem aut dimensionem solidi habeat.
(FRANCIS BACON, SERMONES FIDELES SIVE INTERIORA RERUM, XXVI. DE PRUDENTIA APPARENTE 1:6)
Rursus multitudinis alia sunt per se, ut tres vel quattuor vel tetragonus vel quilibet numerus, qui ut sit nullo indiget Alia vero per se ipsa non constant, sed ad quiddam aliud referuntur, ut duplum, ut dimidium, ut sesqualterum vel sesquitertium et quicquid tale est, quod, nisi relatum sit ad aliud, ipsum esse non possit.
(보이티우스, De Arithmetica, Liber primus, Proemium, in quo divisio mathematicae. 1:7)
Hoc autem in hac est dispositione divinum, quod omnes angulares numeri tetragoni sunt.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:1)
et ut angulorum totius descriptionis ad angulares tetragonos positorum unius anguli sit prima unitas, alterius vero, qui contra est, tertia, bini vero altrinsecus anguli secundas habeant unitates;
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:13)
et duo angularium tetragonorum anguli aequum faciunt, quod sub ipsis continetur, illi, quod fit ab uno illorum, qui est altrinsecus, angulorum.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 2:14)
Ex hoc igitur principio, id est ex unitate, prima omnium longitudo succrescit, quae a binarii numeri principio in cunctos sese numeros explicat, quoniam primum intervallum linea est. Duo vero intervalla sunt longitudo et latitudo, id est linea et superficies.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:24)
longitudo, latitudo, altitudo, id est linea, superficies atque soliditas.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:26)
Quare quicquid uno intervallo caret, illud corpus solidum non est. Nam quod duo sola intervalla retinet, illud superficies appellatur.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:34)
Omnis enim superficies sola longitudine et latitudine continetur.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:35)
Haec autem superficies uno tantum intervallo solidi corporis demensione superatur, quae uno rursus intervallo lineam vincit, quae longitudinis naturam retinens latitudinis expers est;
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:38)
quae linea, quod unius est intervalli sortita naturam, a superficie uno intervallo, a soliditate duobus spatiis vincitur.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:39)
Quare si punctum uno quidem intervallo a linea supergreditur, idem a superficie vincitur duobus, tribus vero intervalli demensionibus a soliditate relinquitur, constat punctum ipsum sine ulla corporis magnitudine vel intervalli demensione, cum et longitudinis et latitudinis et profunditatis expers sit, omnium intervallorum esse principium et natura insecabile, quod Graeci atomon vocant, id est ita deminutum atque parvissimum, ut eius pars inveniri non possit.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:41)
Est igitur punctum primi intervalli principium, non tamen intervallum, et lineae caput, sed nondum linea, sicut linea quoque superficieiprincipium est, sed ipsa superficies non est, et secundi intervalli caput est, secundum tamen intervallum ipsa non retinet.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:42)
Idem quoque et in superficiei rationem cadit, quae et ipsa solidi corporis et triplicis intervalli naturale sortitur initium, ipsa vero nec trina intervalli demensione distenditur, nec ulla crassitudine solidatur.
(보이티우스, De Arithmetica, Liber secundus, De per se constante quantitate, quae in figuris geometricis consideratur; in quo communis ratio omnium magnitudinum. 1:43)

SEARCH

MENU NAVIGATION