라틴어 문장 검색

Angulus igitur FQG, qui longitudinum differentia est, oritur ab inaequalitate motuum Cometae ac Terrae.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 13:15)
Sumatur angulus [Aries]TV aequalis angulo [Aries]QF, hoc est aequalis longitudini Cometae ubi Terra versatur in T. Jungatur ac, & producatur ea ad g, ut sit ag ad ac ut AG ad AC, & erit g locus quem Terra tempore observationis ultimae, motu in recta ac uniformiter continuato, attingeret.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 13:22)
Ideoque si ducatur g[Aries] ipsi T[Aries] parallela, & capiatur angulus [Aries]gV angulo [Aries]QG aequalis, erit hic angulus [Aries]gV aequalis longitudini Cometae è loco g spectati;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 13:23)
ut inveniatur hujus longitudo, pone intervalla HI, IK, KL, LM, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 31:11)
& per Lemma superius inveniatur ejus ordinatim applicata RS, erit RS longitudo quaesita.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 36:5)
Si longitudinum observatarum parvae sint differentiae, puta graduum tantum 4 vel 5;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 38:1)
suffecerint observationes tres vel quatuor ad inveniendam longitudinem & latitudinem novam.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 38:2)
Rectae I[mu] & [mu]M & longitudo AIC ÷ 4S[mu] aequantur inter se.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 48:1)
Cometa quo tempore describit arcum A[mu]C, si progrederetur ea semper cum velocitate quam habet in altitudine ipsi SP aequali, describeret longitudinem aequalem chordae AC.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 50:2)
Quare AC est ad longitudinem in tangente descriptam ut S[mu] ad SN.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 51:4)
idem tempore in orbe suo describat arcum AC, descensu suo describeret spatium longitudini I[mu] aequale.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 54:2)
Nam Cometa quo tempore describat arcum Parabolicum AC, eodem tempore ea cum velocitate quam habet in altitudine SP (per Lemma novissimum) describet chordam AC, adeoque eodem tempore in circulo cujus semidiameter esset SP revolvendo, describeret arcum cujus longitudo esset ad arcus Parabolici chordam AC in dimidiata ratione unius ad duo.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 55:1)
÷ 4S[mu], id est spatium longitudini I[mu] vel M[mu] aequale. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 55:6)
In longitudine media tB sumatur utcunque punctum B, & inde versus Solem S ducatur linea BE, quae sit ad Sagittam tV, ut contentum sub SB & St quadrato ad cubum hypotenusae trianguli rectanguli, cujus latera sunt SB & tangens latitudinis Cometae in observatione secunda ad radium tB.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 6:2)
Deinde in MN versus N capiatur MP, quae sit ad longitudinem supra inventam X in dimidiata ratione mediocris distantiae Telluris à Sole (seu semidiametri orbis magni) ad distantiam OD.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 41 7:4)

SEARCH

MENU NAVIGATION