라틴어 문장 검색

occurrentia in H & I. Secetur tangens in A, ita ut sit HA ad AI, ut est rectangulum sub media proportionali inter BH & HD & media proportionali inter CG & GP, ad rectangulum sub media proportionali inter PI & IC & media proportionali inter DG & GB, & erit A punctum contactus.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. V. Inventio orbium ubi umbilicus neuter datur. 57:4)
Explicatis attractionibus corporum Sphaericorum, jam pergere liceret ad leges attractionum aliorum quorundam ex particulis attractivis similiter constantium corporum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 112:1)
dico quod si distantiae illae sumantur continue proportionales, densitates fluidi in iisdem distantiis erunt etiam continue proportionales.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 28:2)
Pergatur per saltum, & (ex aequo) in distantiis SA, SC, SE continue proportionalibus, erunt densitates AH, CK, EM continue proportionales.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 30:25)
Et propterea, cum area posterior proportionalis sit motui Nodorum in Circulo, erit area prior proportionalis motui Nodorum in Ellipsi. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 5:18)
Et si lineae SA, SE, SQ obtinent alium quemvis ordinem in serie continue proportionalium, lineae AH, EM, QT, ob proportionales areas Hyperbolicas, obtinebunt eundem ordinem in alia serie quantitatum continue proportionalium.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 32:6)
eo ut progressio gravitatum specificarum a fundo A ad summitatem Fluidi continua reddatur, & in distantiis quibusvis continue proportionalibus SA, SD, SQ, densitates AH, DL, QT, semper existentes continue proportionales, manebunt etiamnum continue proportionales. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 30:28)
Et simili argumento attractio planorum omnium EF, ef in Sphaera tota, hoc est attractio Sphaerae totius, est ut summa planorum omnium, seu Sphaera tota, ducta in pS distantiam corpusculi a centro Sphaerae. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 53:6)
Corpora Sphaerica quibus resistitur in duplicata ratione velocitatum, temporibus quae sunt ut motus primi directe & resistentiae primae inverse, amittent partes motuum proportionales totis, & spatia describent temporibus istis in velocitates primas ductis proportionalia.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 15:1)
Hinc attractiones corpusculi unius, factae versus singulas particulas Sphaerae unius, erunt ad attractiones alterius versus analogas totidem particulas Sphaerae alterius, in ratione composita ex ratione particularum directe & ratione duplicata distantiarum inverse.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 11:2)
Sit Fluidi cujusdam densitas compressioni proportionalis, & partes ejus a vi centripeta distantiis suis a centro reciproce proportionali deorsum trahantur:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 28:1)
Sit Fluidi cujusdam densitas compressioni proportionalis, & partes ejus a gravitate quadratis distantiarum suarum a centro reciproce proportionali deorsum trahantur:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. V. De Densitate & compressione Fluidorum, deque Hydrostatica. 34:1)
corpora illa temporibus proportionalibus similes excitabunt motus in Fluidis, & spatia similia ac diametris suis proportionalia describent.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 9:5)
Etenim in AD producta capiantur Ad, Ae ipsis AD, AE proportionales, & erigantur ordinatae db, ec ordinatis DB, EC parallelae & proportionales.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. I. De Methodo Rationum primarum & ultimarum, cujus ope sequentia demonstrantur. 41:1)
Ideoque differentia arearum & spatium illud proportionalibus momentis crescentia vel decrescentia, & simul incipientia vel simul evanescentia, sunt proportionalia. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. III. De motu corporum quae resistuntur partim in ratione velocitatis, partim in ejusdem ratione duplicata. 34:9)

SEARCH

MENU NAVIGATION