라틴어 문장 검색

Etenim quos ad quamlibet illam rem constringendam cuneos formant neque latitudinis neque longitudinis neque altitudinis habita ratione, quantum commodum fuerit, tantum vel altitudini minuitur, vel crassitudini profunditatis augetur.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 7:8)
Quidam vero hos bomiscos vocant, id est quasdam arulas, quae in Ionica Graeciae regione, ut ait Nicomachus, hoc modo formatae fuerunt, ut neque altitudo latitudini neque haec longitudini convenirent.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 7:10)
Igitur cybi aequalibus se spatiis porrigentis et huius formae, quam diximus, gradata distributione dispositae medietates sunt, quae neque cunctis partibus aequales sunt, neque omnibus inaequales, quos Graeci parallelepipedos vocant.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 7:12)
Latini nomen hoc ita uniformiter compositum habere non possunt, ut tamen idem pluribus dictum sit. Ea namquc hoc nomine vocatur figura, quae alternatim positis latitudinibus continetur.
(보이티우스, De Arithmetica, Liber secundus, De cybis vel asseribus vel laterculis vel cuneis vel sphericis vel parallelepipedis numeris 7:13)
Quare quoniam tetragonorum haec natura est, ut ab inparibus procreentur, qui sunt unitatis participes, id est eiusdem inmutabilisque substantiae, cunctisque partibus suis aequales sint, quod et anguli angulis et latera lateribus et longitudini compar est latitudo, dicendum est, huiusmodi numeros eiusdem naturae atque inmutabilis substantiae participes, illos vero numeros, quos parte altera longiores paritas creat, alterius dicemus esse substantiae.
(보이티우스, De Arithmetica, Liber secundus, Quod ex inparibus quadrati, ex paribus parte altera longiores fiant 1:2)
Namque si se ipsa multiplicet vel per latitudinem vel etiam per profunditatem vel si quem numerum in suam conglobet quantitatem, continuo alter exoritur.
(보이티우스, De Arithmetica, Liber secundus, Quod ex inparibus quadrati, ex paribus parte altera longiores fiant 4:4)
tres ter bis, qui sunt xviij vel quattuor quater bis, vel alio quo modo, ut his in latitudinem longitudinemque aequis minor altitudo ducatur.
(보이티우스, De Arithmetica, Liber secundus, De generatione laterculorum eorumque definitione 1:2)
Nam si aequa fuerit latitudo longitudini et maior sit altitudo, illae figurae a nobis asseres, a Graecis docides nominantur.
(보이티우스, De Arithmetica, Liber secundus, De generatione laterculorum eorumque definitione 1:6)
Illi vero, qui sunt pares, quoniam binarii numeri formae sunt, quique ex his coacervati collectique in unam congeriem parte altera longiores numeri nascuntur, hi secundum ipsius binarii numeri naturam ab eiusdem substantiae natura discessisse dicuntur, putanturque alterius naturae esse participes idcirco, quoniam, cum latera tetragonorum ab aequalitate progressa in aequalitatempropriae latitudinis ambitum tendant, hi adiecto uno ab aequalitate laterum discesserunt atque ideo dissimilibus lateribus et quodammodo a se alteris coniunguntur.
(보이티우스, De Arithmetica, Liber secundus, De ea natura rerum, quae dicitur eiusdem naturae, et de ea, quae dicitur alterius naturae et qui numeri cui naturae coniuncti sint 1:5)
Horum igitur si primum compares primo, dupli quantitas invenitur, quae est prima multiplicitatis species, si vero secundum secundo hemioliae quantitatis habitudo producitur, si tertium tertio sesquitertia proportio procreatur, si quartum quarto, sesquiquarta, et si quintum quinto, sesquiquinta, et hinc superparticularium normam in quamvis longissimum spatium progrediens integram inoffensamque repperies, ita ut in prima dupli proportione unitatis solius sit differentia, duo namque ab uno sola semper discrepant unitate.
(보이티우스, De Arithmetica, Liber secundus, Ex eiusdem atque alterius numeri natura qui sunt quadratus et parte altera longior, omnes proportionum habitudines constare 4:1)
Ita enim ex longitudine in latitudinem distentus est et in altitudinis cumulum crevit, ut ex aequalibus proficiscens ad aequalia perveniens aequaliter totus sibi conveniens creverit.
(보이티우스, De Arithmetica, Liber secundus, De geometrica armonia 1:2)
Differentiam terminorum in minorem terminum multiplica et post iunge terminos, et iuxta eum, qui inde confectus est, committe illum numerum, qui ex differentiis et termino minore productus est, cuius cum latitudinem inveneris, addis eam minori termino, et quod exinde colligitur, medium terminum pones.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 5:17)
Et invenitur latitudo senarius.
(보이티우스, De Arithmetica, Liber secundus, Quemadmodum constitutis altrinsecus duobus terminis arithmetica, geometrica et armonica inter eos medietas alternetur: in quo de eorum generationibus 5:20)
Haec autem huiusmodi invenietur, si duobus terminis constitutis, qui ipsi tribus creverint intervallis, longitudine latitudine et profunditate, duo huismodi termini medii fuerint constituti et ipsi tribus intervallis notati, qui vel ab aequalibus per aequales aequaliter sint producti vel ab inaequalibus ad inaequalia inaequaliter, vel ab inaequalibus ad aequalia aequaliter, vel quolibet alio modo, atque ita, cum armonicam proportionem custodiant alio tamen modo comparati faciant arithmeticam medietatem hisque geometrica medietas, quae inter utrasque versatur, deesse non possit.
(보이티우스, De Arithmetica, Liber secundus, De maxima et perfecta symphonia, quae tribus distenditur intervallis 1:3)
Quod si ad aeternitatis infinita spatia pertractes, quid habes quod de nominis tui diuturnitate laeteris?
(보이티우스, De philosophiae consolatione, Liber Secundus, XIII 2:4)

SEARCH

MENU NAVIGATION