라틴어 문장 검색

& hoc angulo repetito corpus redibit ab Apside ima ad Apsidem summam, & sic deinceps in infinitum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 18:17)
angulus inter Apsidem summam & Apsidem imam aequalis 180 ÷ 2 gr.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 18:20)
inter Apsidem summam & imam angulus erit graduum 180 ÷ [sqrt]2 seu 127 gr.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 18:26)
& propterea corpus tali vi revolvens, perpetua anguli hujus repetitione, vicibus alternis ab Apside summa ad imam & ab ima ad summam perveniet in aeternum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 18:28)
Et propterea cum angulus VCP inter Apsidem summam & Apsidem imam in Ellipsi immobili sit 180 gr.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 21:9)
erit angulus VCp inter easdem Apsides, in Orbe quem corpus vi centripeta quantitati {bA^m + cA^n} ÷ A cub.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 21:10)
proportionali describit, aequalis angulo graduum 180 [sqrt]{{b + c} ÷ {mb + nc}}.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 21:11)
, angulus inter Apsides invenietur 180 [sqrt]{{b - c} ÷ {mb - nc}} graduum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 21:13)
Si rota globo extrinsecus ad angulos rectos insistat, & more rotarum revolvendo progrediatur in circulo maximo;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 11:1)
Si rota globo concavo ad rectos angulos intrinsecus insistat & revolvendo progrediatur in circulo maximo;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 13:1)
angulo CEP aequalis est, similia erunt triangula VHG, CEP;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 16:6)
Sed existente BV radio, est VP cosinus anguli VPB seu ½BEP, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 16:10)
BV - VP sinus versus ejusdem anguli, & propterea in hac Rota cujus radius est ½BV, erit BV - VP duplus sinus versus arcus ½BP.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 16:11)
Hinc si describatur Cyclois integra ASL & bisecetur ea in S, erit longitudo partis PS ad longitudinem VP (quae duplus est sinus anguli VBP, existente EB radio) ut 2CE ad CB atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 18:2)
Est igitur TP ad VP (duplum sinum anguli VBP existente ½BV radio) ut BW ad BV, seu AO + OR ad AO, id est (cum sint CA ad CO, CO ad CR & divisim AO ad OR proportionales,) ut CA + CO seu 2CE ad CA.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 25:5)

SEARCH

MENU NAVIGATION