라틴어 문장 검색

& per puncta N, N, N agatur curva regularis NNN secans rectam SMMM in X, & erit SX vera ratio resistentiae ad gravitatem, quam invenire oportuit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 34:9)
Unde datur spatium in Medio resistente descriptum, capiendo illud ad spatium quod velocitate uniformi AB in Medio non resistente simul describi posset, ut est area Hyperbolica ABGD ad rectangulum AB × AD.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 6:2)
Datur etiam resistentia Medii, statuendo eam ipso motus initio aequalem esse vi uniformi centripetae, quae, in cadente corpore, tempore AC, in Medio non resistente, generare posset velocitatem AB.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 7:2)
recta AT aequalis erit ipsi AC, & tempus exponet quo resistentia prima uniformiter continuata tollere posset velocitatem totam AB.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 7:4)
& inde datur punctum B per quod Hyperbola Asymptotis CH, CD describi debet;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 9:3)
Atqui areae Hyperbolicae KNOL ad rectangulum KL × KN ratio ultima, ubi coeunt puncta K & L, est aequalitatis.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 40:12)
erunt in progressione Geometrica. Q. E. D. Et simili argumento, in ascensu corporis, sumendo, ad contrariam partem puncti A, aequales areas ABmi, imnk, knol, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 40:17)
Hinc si AB aequetur quartae parti ipsius AC, spatium ABRP, quod corpus tempore quovis ATD cadendo describit, erit ad spatium quod corpus semisse velocitatis maximae AC, eodem tempore uniformiter progrediendo describere potest, ut area ABRP, qua spatium cadendo descriptum exponitur, ad aream ATD qua tempus exponitur.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 52:2)
Nimirum quod spatium illud omne sit ad spatium, uniformi cum velocitate AC eodem tempore descriptum, ut est area ABnk ad Sectorem ADt.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 53:3)
Tendat uniformis vis gravitatis directe ad planum Horizontis, sitq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 60:1)
& a punctis C, G, g, ad planum horizontale AK demittantur perpendicula CB, GD, gd, quorum GD ac gd tangenti occurrant in F & f.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 62:9)
perspicuum est quod linea, quam Projectile in Medio uniformiter resistente describit, propius accedit ad Hyperbolas hasce quam ad Parabolam.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 90:2)
X & Asymptotis MX, NX per punctum A describatur Hyperbola, ea lege ut sit AI ad quamvis VG ut XV^n ad XI^n.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 97:5)
Simili methodo ex assumptis pluribus longitudinibus AH invenienda sunt plura puncta N:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 100:10)
si jam desideretur positio rectae AH, secundum quam Projectile data illa cum velocitate emissum incidit in punctum quodvis K:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 102:3)

SEARCH

MENU NAVIGATION