라틴어 문장 검색

qui si minoris habeat medietatem, vocatur sesqualter, si vero tertiam partem, vocatur sesquitertius, si vero quartam, sesquiquartus, et si quintam, vocatur sesquiquintus;
(보이티우스, De Arithmetica, Liber primus, De superparticulari eiusque speciebus earumque generationibus. 1:2)
Nam primi se nullo in medio posito transeunt, secundi interponunt unum, tertii duos, quarti tres et deinceps uno semper minore, quam ipsi sunt, intermissione succrescunt, atque hoc vel in sesqualteris vel in sesquitertiis vel in aliis superparticularis partibus necesse est inveniri.
(보이티우스, De Arithmetica, Liber primus, De quodam utili ad cognitionem superparticularibus accidente. 1:2)
Inter viiij enim et xij sunt x et xj. Secundum hunc modum quarta dispositio iij, quinta iiij intermittit.
(보이티우스, De Arithmetica, Liber primus, De quodam utili ad cognitionem superparticularibus accidente. 1:8)
Sit enim talis descriptio, in qua ponatur in ordinem usque ad denarium numerum continui numeri ordo naturalis et secundo versu duplus ordo texatur, tertio triplus, quarto quadruplus et hoc usque ad decuplum.
(보이티우스, De Arithmetica, Liber primus, Descriptio, per quam docetur ceteris inaequalitatis speciebus antiquiorem esse multiplicitatem. 1:2)
Si quis autem quarti anguli terminum, qui xvj numeri quantitate notatus est et longitudinem latitudinemque in quadragenos determinat, velit superioribus comparare, per x litterae formam proportione conlata, quadrupli multitudinem pernotabit, hisque est ordinabilis super se progressio, ut primus primum tribus superet, ut iiij unitatem, secundus secundum senario vincat, ut viij binarium, tertius tertium novenario transeat, ut duodenarius ternarium, et sequentes summulae trium se semper adiecta quantitate transsiliant.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:5)
Si vero quartus ordo tertio comparetur, ut iiij ad iij et eodem ceteros ordine consecteris, sesquitertia comparatio colligetur, ut iiij ad iij vel viij ad vj et xij ad viiij.
(보이티우스, De Arithmetica, Liber primus, Ratio atque expositio digestae formulae. 1:12)
Ordo autem eorum naturalis est, quotiens disponuntur a tribus omnes pares atque inpares numeri naturaliter constituti et sub his aptantur alii, qui sunt a quinario numero incipientes omnes inpares.
(보이티우스, De Arithmetica, Liber primus, De tertia inaequalitatis specie, quae dicitur superpartiens deque eius speciebus earumque generationibus. 2:4)
Multiplex superparticularis est, quotiens numerus ad numerum comparatus habet eum plus quam semel et eius unam partem, hoc est habet eum aut duplum aut triplum aut quadruplum aut quotienslibet et eius quamlibet aliquam partem vel mediam vel tertiam vel quartam vel, quaecunque alia partium exuberatione contigerit.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 1:4)
Dicetur enim, qui duplicem habuerit alium numerum et eius mediam partem, duplex sesqualter, qui vero tertiam, duplex sesquitertius, qui quartam, duplex sesquiquartus et deinceps.
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 1:9)
Si vero ter eum totum contineat et eius mediam partem vel tertiam vel quartam, dicetur triplex sesqualter, triplex sesquitertius, triplex sesquiquartus et eodem modo in ceteris;
(보이티우스, De Arithmetica, Liber primus, De multiplici superparticulari. 1:10)
In hoc quoque propter causam superius dictam non erunt duae medietates neque duae quartae neque duae sextae, sed duae tertiae vel duae quintae vel duae septimae ad priorum similem consequentiam.
(보이티우스, De Arithmetica, Liber primus, De multiplici superpartiente. 1:2)
Primus ergo duplex unum solum habebit sesqualterum, secundus duo, tertius tres, quartus quattuor et secundum hunc ordinem eadem fit in infinitum progressio, neque unquam fieri potest, ut vel superet proportionum numerum vel ab eo sit deminutior aequabilis ab unitate locatio.
(보이티우스, De Arithmetica, Liber secundus, De inveniendo in unoquoque numero quot numeros eiusdem proportionis possit praecedere eorumque descriptio descriptionisque expositio. 2:3)
Plana vero superficies in numeris invenitur, quotiens a tribus inchoatione facta addita descriptionis latitudine insequentium se naturalium numerorum multitudine anguli dilatantur, ut sit primus triangulus numerus, secundus quadratus, tertius qui sub quinque angulis continetur, quem pentagonum Graeci nominant, quartus exagonus, id est qui sex angulis includitur et ceteri eodem modo singillatim per naturalem numerum angulos augeant in plana scilicet descriptione figurarum.
(보이티우스, De Arithmetica, Liber secundus, De planis rectilineis figuris, quodque earum triangulum principium sit 2:1)
quarti vero, id est xv, quinarius latus tenet, et quinti senarius idemque est usque in infinitum.
(보이티우스, De Arithmetica, Liber secundus, De lateribus triangulorum numerorum. 1:8)
At vero si his intermisso senario septenarium iungam tota in sedecim summa concrescit, id est quarti quadrati numerositas.
(보이티우스, De Arithmetica, Liber secundus, De quadratorum numerorum generatione rursusque de eorum lateribus 3:6)

SEARCH

MENU NAVIGATION