라틴어 문장 검색

Igitur si in aequalibus à Sole distantiis, gravitas acceleratrix Satellitis cujusvis in Solem major esset vel minor quàm gravitas acceleratrix Jovis in Solem, parte tantum millesima gravitatis totius;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 21:28)
Et eodem argumento pondera Saturni & Comitis ejus in Solem, in aequalibus à Sole distantiis, sunt ut quantitates materiae in ipsis:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 21:32)
in recessu verò à magnete decrescit in ratione distantiae plusquam duplicata, per Prop.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 26:7)
Planetas omnes in se mutuò graves esse jam ante probavimus, ut & gravitatem in unumquemque seorsim spectatum esse reciprocè ut quadratum distantiae locorum à centro Planetae.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 29:1)
Gravitatio in singulas corporis particulas aequales est reciprocè ut quadratum distantiae locorum à particulis.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 32:2)
erit pondus Globi alterutrius in alterum reciprocè ut quadratum distantiae inter centra.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 34:2)
& esse in partes singulas reciprocè proportionalem quadratis distantiarum à partibus:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 35:2)
collatis cum distantia mediocri Veneris à Sole;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 36:8)
cum Elongatione maxima Heliocentrica Satellitis extimi circumjovialis, quae (in mediocri Jovis à Sole distantia juxta observationes Flamstedii) est 8'. 13";
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 36:9)
& cum distantia Lunae à Terra, ex Hypothesi quod Solis parallaxis horizontalis seu semidiameter Terrae è Sole visae sit quasi 20";
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 36:11)
Unde cum pondera aequalium corporum à centris Solis, Jovis, Saturni ac Telluris aequaliter distantium sint in Solem, Jovem, Saturnum ac Terram ut 1, 1/1100, 1/2360, 1/28700 respective, & auctis vel diminutis distantiis diminuuntur vel augentur pondera in duplicata ratione;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 36:19)
erunt pondera eorundem aequalium corporum in Solem, Jovem, Saturnum & Terram, in distantiis 10000, 1063, 889 & 208 ab eorum centris, atque adeo in eorum superficiebus versantium, ut 10000, 804½, 536 & 805½ respectivè.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 36:20)
Nam quantitates illae sunt ut Planetarum Vires in distantiis à se aequalibus;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 38:3)
Planetarum autem densitates inter se fere sunt in ratione composita ex ratione distantiarum à Sole & ratione dimidiata diametrorum apparentium è Sole visarum.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 40:2)
Nempe Saturni, Jovis, Terrae & Lunae densitates 60, 76, 387 & 700, fere sunt ut distantiarum reciproca 1/9538, 1/5201, 1/1000 & 1/1000, ducta in radices diametrorum apparentium 18", 39"½, 40", & 11".
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 1~10 40:3)

SEARCH

MENU NAVIGATION