라틴어 문장 검색

Et si punctum e tangat curvam NeFn, area tota NeZ, quae summa est omnium decrementorum, respondebit decremento toti, quo tempore arcus AN percurritur;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 13:31)
& area reliqua NAe respondebit motui reliquo, qui verus est Nodi motus quo tempore arcus totus NA, per Solis & Nodi conjunctos motus, percurritur.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 13:32)
Jam verò si circuli radius AT ponatur 1, erit area semicirculi 1,570796;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 13:33)
& area figurae NeFnT, per methodum Serierum infinitarum quaesita, prodibit 0,1188478.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 13:34)
In tempore quod est ut area NTA - NdZ, (in Fig.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 17:1)
) motus iste est ut area NAeN, & inde datur.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 17:3)
ideoque IT × TG aequale Kk × Hp × TZ ÷ Mp, hoc est aequale areae HpMh ductae in rationem TZ ÷ Mp:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 24:5)
33^{iv}, ut aggregatum omnium arearum HpMh, in revolutione puncti p generatarum, & sub signis propriis + & - conjunctarum, ductum in AZ × TZ × Pp ÷ PG, ad Mp × AT cub.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 31~38 25:4)
Cometas in Sectionibus conicis umbilicos in centro Solis habentibus moveri, & radiis ad solem ductis areas temporibus proportionales describere.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 22:1)
Deinde erecta quacunque perpendiculari RS, quae fuerit ordinatim applicata ad curvam quaesitam:
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 31:10)
pergendo scilicet ad usque perpendiculum penultimum ME, & erit ordinatim applicata RS = a + bp + cq + dr + es + ft, &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 32:14)
Hinc areae curvarum omnium inveniri possunt quamproximè.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 33:2)
& per Lemma superius inveniatur ejus ordinatim applicata RS, erit RS longitudo quaesita.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 36:5)
Ideoque contentum sub longitudine in Tangente descripta & longitudine S[mu], esset ad contentum sub longitudinibus AC & SM, ut area ASC[mu] ad triangulum ASCM, id est ut SN ad SM.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 39~40 51:3)
& ejus areae, radiis à Sole ad loca inventa ductis terminatae, sunto D & E;
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 42 3:8)

SEARCH

MENU NAVIGATION