라틴어 문장 검색

erit (in Exemplis tertiis) A aequalis 1 & n aequalis 4, adeoq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 23:7)
Centro item C & intervallo quovis describatur circulus nom secans rectam CP in n, Rotae perimetrum Bp in o & viam curvilineam AP in m, centroq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 15:9)
& pondus T oscillabitur in Cycloide data QRS. Q. E. F.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 24:5)
Ergo si SNn sit curva illa linea quam punctum N perpetuo tangit, erit area SNDS proportionalis tempori quo corpus descendendo descripsit lineam ST;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. X. De Motu Corporum in Superficiebus datis, deq; Funipendulorum Motu reciproco. 51:10)
quorum SD, sd secent PL, pl in F & f.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 8:6)
PS in F, f;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 62:3)
dico quod vis tota, qua corpusculum P trahitur versus Sphaeram, est ut area comprehensa sub axe Sphaerae AB & linea curva ANB, quam punctum N perpetuo tangit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 69:3)
tres illae partes evadent ordinatim applicatae linearum totidem curvarum, quarum areae per Methodos vulgatas innotescunt. Q. E. F.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 81:2)
× PS} ÷ {PE × PE^n} & {DEq.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 103:6)
Superficie Sphaerica EFG centro P descripta secetur DB in F, ac distinguatur segmentum in partes BREFGS, FEDG.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 107:2)
Nominetur ista profunditas O, & erit haec superficies (per demonstrata Archimedis) ut PF × DF × O. Ponamus praeterea vires attractivas particularum Sphaerae esse reciproce ut distantiarum dignitas illa cujus Index est n;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 107:4)
& vis qua superficies FE trahit corpus P erit ut DF × O ÷ PF^{n - 1}.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XII. De Corporum Sphaericorum Viribus attractivis. 107:5)
Et si diameter circuli augeatur in infinitum, & numerus n sit unitate major;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 29:2)
Per corpus illud P agantur tum semidiameter SPA, tum rectae duae quaevis DE, FG Sphaeroidi hinc inde occurrentes in D & E, F & G:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 40:6)
Agatur autem CGHI planis illis innumeris perpendicularis, & decrescant vires attractivae punctorum solidi in ratione potestatis distantiarum, cujus index sit numerus n ternario non minor.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 47:7)

SEARCH

MENU NAVIGATION