라틴어 문장 검색

produc tum AB ad G ut sit BG ad CE ut M - N ad N, tum AD ad H ut sit AH aequalis AG, tum etiam DF ad K ut sit DK ad DH ut N ad M. Junge KB, & centro D intervallo DH describe circulum occurrentem KB productae in L, ipsiq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIV. De motu corporum minimorum, quae viribus centripetis ad singulas magni alicujus corporis partes tendentibus agitantur. 26:4)
Quare cum angulus VCP, in descensu corporis ab Apside summa ad Apsidem imam in Ellipsi confectus, sit graduum 180, conficietur angulus VCp, in descensu corporis ab Apside summa ad Apsidem imam in Orbe propemodum circulari, quem corpus quodvis vi centripeta dignitati A^{n - 3} proportionali describit, aequalis angulo graduum 180 ÷ [sqrt]n;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 18:16)
linea illa Rr (seu {DR × AB - DR × AQ} ÷ N) tunc est ad DR ut AB - AQ (seu QB) ad N, id est ut CP ad DC; atq;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 28:9)
Et erit DN aequalis a - o, VG aequalis bb ÷ {a - o}, VZ aequalis m ÷ n {a - o}, & GD seu NX - VZ - VG aequalis c - {m ÷ n}a + {m ÷ n}o - bb ÷ {a - o}.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. II. De motu corporum quibus resistitur in duplicata ratione velocitatum. 78:5)
RV aequalis DR × QB ÷ N, & Rr (id est RV - Vr seu {DR × QB - tGT} ÷ N) aequalis {DR × AB - RDGT} ÷ N. Exponatur jam tempus per aream RDGT, & (per Legum Corol. 2.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. I. De Motu corporum quibus resistitur in ratione velocitatis. 28:2)
Sed area illa per notas quadraturarum methodos est reciproce ut CG^{n - 3}, & propterea vis solidi totius est reciproce ut CG^{n - 3} Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 47:17)
foret tempus vibrationis unius ad tempus oscillationis Penduli cujus longitudo est A, in dimidiata ratione longitudinis ½PS seu PO ad longitudinem A. Sed vis Elastica qua lineola Physica EG, in locis suis extremis P, S existens, urgetur, erat (in demonstratione Propositionis superioris) ad ejus vim totam Elasticam ut HL - KN ad V, hoc est (cum punctum K jam incidat in P) ut HK ad V:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:5)
mm-m nn-n bT^m - mbXT^{m-1} + ----bX^2T^{m-2} + cT^n - ncXT^{n-1} + ----cX^2T^{n-2} 2 2 &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 20:1)
& signis + & - probe observatis quaerantur numeri m & n, ea lege ut sit G - C = mG - mg + nG - n[gamma], & T - S aequale mT - mt + nT - n[tau].
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 42 6:3)
ad bT^m + cT^n, ut -Fq. ad -mbT^{m - 1} - ncT^{n - 1} + {mm - m}÷2 XT^{m - 2} + {nn - n}÷2 XT^{n - 2} &c.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 21:4)
Haec autem vis (per Casum primum) est reciproce ut CK^{n - 3}, hoc est (ob aequales CG, CK) reciproce ut CG^{n - 3}. Q. E. D.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. XIII. De Corporum etiam non Sphaericorum viribus attractivis. 48:5)
erit R + mr - mR + n[rho] - nR verum Latus rectum, & 1 ÷ {L + ml - mL + n[lambda] - nL} verum Latus transversum Trajectoriae quàm Cometa describit.
(아이작 뉴턴, 자연철학의 수학적 원리, 세상의 체계에 대하여 3권, 제안 42 6:7)
Et sumendo rationes ultimas quae prodeunt ubi orbes ad formam circularem accedunt, fit Gq. ad bT^{m - 1} + cT^{n - 1}, ut Fq. ad mbT^{m - 1} + ncT^{n - 1}, & vicissim Gq. ad Fq. ut bT^{m - 1} + cT^{n - 1} ad mbT^{m - 1} + ncT^{n - 1}.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 1권, SECT. IX. De Motu Corporum in Orbibus mobilibus, deq; motu Apsidum. 21:5)
Quare cum tempora, quibus aequalia corpora per aequalia spatia impelluntur, sint reciproce in dimidiata ratione virium, erit tempus vibrationis unius urgente vi illa Elastica, ad tempus vibrationis urgente vi ponderis, in dimidiata ratione V × EG ad HK × A, atque adeo ad tempus oscillationis Penduli cujus longitudo est A, in dimidiata ratione V × EG ad HK × A & PO ad A conjunctim;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 51:8)
Quod si figura DNFB ejusmodi sit ut, si ab ejus puncto quovis N ad axem AB demittatur perpendiculum NM, & a puncto dato G ducatur recta GR quae parallela sit rectae figuram tangenti in N, & axem productum secet in R, fuerit MN ad GR ut GR cub.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 34:1)

SEARCH

MENU NAVIGATION