라틴어 문장 검색

Parabam igitur uncum firmum, ut punctum suspensionis immotum maneret, & tunc omnia ita evenerunt uti supra descripsimus.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VII. De Motu Fluidorum & resistentia Projectilium. 107:7)
Si pressionis a dato puncto per Fluidum propagatae pars aliqua obstaculo intercipiatur, pars reliqua quae non intercipitur divaricabit in spatia pone obstaculum.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 5:2)
A puncto A propagetur pressio quaquaversum, idque si fieri potest secundum lineas rectas, & obstaculo NBCK perforato in BC, intercipiatur ea omnis, praeter partem Coniformem APQ, quae per foramen circulare BC transit.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 5:4)
Ponamus jam quod de, fg, hi, kl, mn designent pulsus a puncto A per Medium Elasticum successive propagatos.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 10:2)
construatur autem Pendulum cujus longitudo inter punctum suspensionis & centrum oscillationis aequetur semissi longitudinis aquae in Canali:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 18:2)
Constituatur Pendulum cujus longitudo inter punctum suspensionis & centrum oscillationis aequetur latitudini Undarum:
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 29:1)
E, F, G puncta tria Physica Medii quiescentis, in recta AC ad aequales ab invicem distantias sita;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 43:4)
Ee, Ff, Gg, spatia aequalia perbrevia per quae puncta illa motu reciproco singulis vibrationibus eunt & redeunt;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 43:5)
[epsilon], [phi], [gamma] loca quaevis intermedia eorundem punctorum;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 43:6)
& EF, FG lineolas Physicas seu Medii partes lineares punctis illis interjectas, & successive translatas in loca [epsilon][phi], [phi][gamma] & ef, fg.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 43:7)
sic ut completo tempore quovis PH vel PHSh, si demittatur ad PS perpendiculum HL vel hl, & capiatur Ee aequalis PL vel Pl, punctum Physicum E reperiatur in [epsilon].
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 43:11)
Hac lege punctum quodvis E eundo ab E per [epsilon] ad e, & inde redeundo per [epsilon] ad E iisdem accelerationis ac retardationis gradibus, vibrationes singulas peraget cum oscillante Pendulo.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 43:12)
Probandum est quod singula Medii puncta Physica tali motu agitari debeant.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 43:13)
Unde [epsilon][gamma] in itu punctorum aequalis erit EG - LN, in reditu autem aequalis EG + ln.
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 44:5)
Unde si OP × BC ÷ Z dicatur V, erit expansio partis EG, punctive Physici F, ad ejus expansionem mediocrem in itu, ut V - IM ad V, in reditu ut V + im ad V;
(아이작 뉴턴, 자연철학의 수학적 원리, 물체들의 움직임에 대하여 2권, SECT. VIII. De Motu per Fluida propagato. 44:10)

SEARCH

MENU NAVIGATION